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ABSTRACT
Defending a web application from attackers requires the correct

configuration of several web security mechanisms for each and

every web page in that web application. This configuration process

can be difficult and result in gaps in the defense against web attack-

ers because some web pages may be overlooked. In this work we

provide a first evaluation of the standard draft for an origin-wide

security configuration mechanism called the “origin manifest”. The

mechanism raises the security level of an entire web origin at once

while still allowing the specification of web security policies at

the web page level. We create prototype implementations of the

origin manifest mechanism for both the client-side and server-side,

and provide security officers with an automated origin manifest

learner and generator to aid them with the configuration of their

web origins. To resolve potential collisions of policies defined by

the web origin with policies defined by web pages we formalize the

comparison and combination of web security policies and integrate

it into our prototype implementation. We evaluate the feasibility

of the origin manifest mechanism with a longitudinal study of pop-

ular websites to determine whether origin manifest files are stable

enough to not require frequent reconfiguration, and perform per-

formance measurements on the Alexa top 10,000 to determine the

network traffic overhead. Our results show that the origin manifest

mechanism can effectively raise the security level of a web origin

while slightly improving network performance.
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1 INTRODUCTION
Today’s web connects billions of people across the planet through

interactive and increasingly powerful web applications. These web

applications are a complicated mix of components on both server-

and client-side. Unfortunately, current security mechanisms are

spread across the different components, opening up for inconsis-

tencies. Previous work [2, 17, 31, 39, 42] shows that it is hard to

securely configure and use these mechanisms.
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Web application security policies are typically transmitted through

HTTP headers from the server to the client. While most web secu-

rity mechanisms operate at the level of a single web page, some,

like HSTS [18] and HPKP [12], operate at the level of an entire web
origin. The web origin, or simply origin, defined as a combination

of the scheme, hostname and port, serves as the de facto security
boundary in web security. Security mechanisms, if misconfigured

at the level for a single web page, may break the operation of an

entire origin. For these reasons, it is valuable to define the scope of

a security policy at the origin level and meaningfully combine it

with application-specific policies for enforcement on the client side.

These considerations have prompted the web security community

to propose a draft to specify a security manifest [16, 41] to allow

definition of security policies at the origin level. The goal it to pro-

vide a backward-compatible origin-wide mechanism, so that security

officers can harden web application security without imposing the

burden of a new mechanism on developers.

To illustrate the need for the origin manifest, consider a web

application for which the developers set a Content Security Policy
(CSP) [34] for every web page, while missing to configure CSP for

their custom 404 error page. If this page has a vulnerability, it puts

the entire web application at risk. This scenario is realistic [13,

19, 26], while not limited to error pages or CSP. For web pages

where security mechanisms are left unconfigured, this motivates a

fallback policy: a default setting for a security policy.

Let us extend this example scenario with additional web appli-

cations hosted under the same web origin. The same-origin policy

(SOP) specifies that access between web origins is not allowed by

default. In our extended example the web applications are under

the same origin and a vulnerability in one application can poten-

tially put the others at risk since SOP as a security boundary does

not protect in this case. To raise the bar for attackers, origin man-

ifest provides a baseline policy for an entire origin: a minimum

origin-wide security setting which can not be overridden, only

reinforced.

Note that the baseline policy can not currently be implemented

by simply centralizing web security policies through e.g. the central

web server configuration [28]. In such a setup, when the central

configuration for a web security header is in conflict with one set

by the web application, one header must be prioritized over the

other. The baseline policy combines both configurations so that the

result is at least as strong as each configuration.

An implementation of the origin manifest mechanism has been

initiated for the Chrome browser [40]. At the same time, there are

open questions [38] about the potential usefulness of the mecha-

nism. The following research questions are critical to determine

whether the origin manifest mechanism is going to make it or break

it: How to combine origin-wide and application-specific policies?

How to aid developers in configuring origin manifests? What is the
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expected lifespan of an origin manifest? Does the mechanism de-

grade performance or, on the contrary, can improve it? This paper

seeks to answer these research questions.

Security improvements through origin-wide baseline policies are

promising but the draft lacks details on how to resolve situations

in which policies defined by the origin collide with policies defined

by web pages. Consider a situation in which both origin and web

page define different Strict-Transport-Security policies. The
problem is that Strict-Transport-Security does not allow mul-

tiple policy definitions for the same page, a situation the origin

manifest mechanism should specify how to resolve. To this end

we determined the need to compare the security level of security

policies, as well as the need to combine security policies into their

least upper bound and greatest lower bound. We formalize the com-

parison and combination of security policies as an extension of

the origin manifest mechanism and create an implementation for

practical evaluation. During implementation, we also realized that

baseline policies do not work well for certain security policies, such

as security flags for web cookies, necessitating the introduction of

augmentonly policies.
In real world deployments the security officers responsible for a

web origin are not necessarily the developers of the web applica-

tions hosted under that origin. Therefore origin security officers

do not always have full control over the configurations of the web

applications. Fortunately, origin manifest does not require this level

of control to take effect and web applications can stay untouched.

Nevertheless, a practical challenge is to define suitable origin-wide

security policies with a certain level of desired security but without

breaking web applications hosted under the origin. A good starting

point is to identify and merge all policies deployed under an ori-

gin to create an origin manifest which covers the policies of each

web application. To support origin security officers in this non-

trivial task we implemented a tool which can learn the deployed

security configurations of web applications under an origin. The

tool utilizes the policy combinator functions to generate an origin

manifest which is in accordance with all observed web applica-

tion policies. Origin security officers can then refine this generated

origin manifest according to their requirements.

A stable origin manifest would reduce the workload on origin se-

curity officers, but requires data on how frequently HTTP headers

tend to change in real-world web applications. To this end we con-

ducted an longitudinal empirical study over 100 days to analyze the

popularity, size and stability of HTTP headers. We used the origin

manifest learner and generator to derive origin manifests for each

visited origin to get a first insight into the practical composition of

origin manifests over a longer period of time. One of our results is

an average origin manifest stability of around 18 days.

The origin manifest draft claims that HTTP headers are often

repeated and can occupy multiple KiB per request, an overhead

which can be reduced by sending the respective headers as part

of the origin-wide configuration. Cross Origin Resources Sharing

(CORS) preflights, which query the server for permission to use

certain resources from different web origins, can be cached per

web origin to reduce network traffic. Though intuitively this might

seem plausible we feel that both claims can benefit from empirical

evidence and practical evaluation. To this end we first implemented

a prototype for the origin manifest mechanism using proxies. We

then used the prototype in a large-scale empirical study to visit the

Alexa top 10,000 and to analyze the network traffic without and

retrofitted with origin manifest. Our results show that there is a

slight reduction of network traffic when using origin manifests.

Addressing the above-mentioned research questions our main

contributions include:

• Extensions to the proposed origin manifest draft:

– A formal description of security policy comparison and

combination functions

– Introduction of a new augmentonly directive
• Automated origin manifest learner and generator

1

• Evaluation with empirical evidence for:

– the feasibility of the origin manifest mechanism in the

form of a longitudinal study of the popularity, size and

stability of observed HTTP headers in the real world

– the origin manifest mechanism’s network traffic overhead,

by measuring and studying the network traffic while visit-

ing the Alexa top 10,000 retrofitted with origin manifests

The rest of this paper is structured as follows: Section 2 describes

the web security mechanisms which the origin manifest mecha-

nism covers. Section 3 outlines the design of the origin manifest

mechanism. Section 4 formalizes comparisons and combinators for

security policies. Section 5 provides details of our prototypes that

implement the origin manifest mechanism. Section 6 deals with the

evaluation of our prototypes. We provide a general discussion in

Section 7, list related work in Section 8 and conclude in Section 9.

2 BACKGROUND
Browsers implement certain security-relevant mechanisms which

can be configured by servers via HTTP headers. The values of the

respective headers therefore represent a security policy enforced by

browsers. In this section we briefly explain the security mechanisms

that can be configured with an origin manifest.

Set-Cookie. The Set-Cookie HTTP header allows the setting

of web cookies [3]. Cookies can be configured with additional

attributes such as httpOnly which makes the cookie inaccessible

from JavaScript, and secure which disallows the transmission of

the cookie over an insecure connection. These attributes form a

policy, specifying how cookies should be handled by browsers.

Content-Security-Policy (CSP). A CSP whitelists which content

is allowed to be loaded into a web page. To this end CSP defines

various directives for different content types such as scripts or

images but also for sub-frames or the base-uri configuration. The

directives whitelist the respectively allowed content. We use CSP

level 3 as specified in [34].

Cross-Origin Resource Sharing (CORS). By default the same-origin

policy does not permit accessing cross-origin resources. CORS [36]

allows web developers to explicitly allow a different origin from

accessing resources in their own origin. Under certain conditions,

e.g. when a request would have a side-effect on the remote side,

browsers will perform an upfront preflight request to query whether
the actual request will be permitted. In contrast to other security

mechanisms, CORS access decisions are communicated through

1
Our implementations available online on http://www.cse.chalmers.se/research/group/

security/originmanifest
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sets of HTTP headers. The composition of the different CORS head-

ers forms a CORS policy. All CORS response header names follow

the pattern ’Access-Control-*’.
X-Content-Type-Options. Some browsers implement content-type

sniffing as a mechanism to verify if the expected content-type of

a loaded resource matches the content-type of the actually loaded

content. The HTTP response header X-Content-Type-Options:
nosniff disables this behavior.

X-XSS-Protection. Most browsers implement some form of cross-

site scripting (XSS) protection, although no standard exists. The

X-XSS-Protection header can configure this feature. For instance,

X-XSS-Protection: 1; mode=block will enable XSS protection
and will block the loading of the web page if an XSS attack is

detected.

Timing-Allow-Origin. Web browsers provide an API for access-

ing detailed timing information about resource loading. Cross-

origin access to this information can be controlled through the

Timing-Allow-Origin HTTP header [35]. By default cross-origin

access is denied. This header allows to define a whitelist of permit-

ted origins.

Strict-Transport-Security. The HTTP header Strict Transport Se-

curity (HSTS) [18] is a mechanism to configure user agents to only

attempt to connect to a web site over secure HTTPS connections.

This policy can be refined through parameters to limit the policy

lifetime (max-age) or to extend the effects of the policy to subdo-

mains (includeSubDomains).
Public-Key-Pins. TheHTTP header Public-Key-Pins (HPKP) [12]

allows to define a whitelist of public key fingerprints of certifi-

cates used for secure connections. If an origin’s certificate does

not match any of the whitelisted fingerprints for that origin, the

connection fails. HPKP policies have a lifetime as specified via the

max-age directive and can be extended to sub-domains through the

includeSubDomains directive. Note that this header is deprecated

for the Chrome browser [8].

X-Frame-Options. The HTTP header X-Frame-Options [29] de-

termines whether the response can be embedded in a sub-frame on

a web page. It accepts three values: DENY disallows all embedding,

SAMEORIGIN allows embedding in a web page from the same origin,

and ALLOW-FROM <origin> allows embedding in a web page from

the specified origin. Because this mechanism is not standardized,

some directives such as e.g. ALLOW-FROM are not supported by all

browsers. This is why we do not consider ALLOW-FROM in our work.

In practice, CSP’s frame-ancestors directive is meant to obsolete

the use of this header [33].

3 MECHANISM DESIGN
The standard draft [41] and its explainer document [16] define the

basic origin policy mechanism. We take it as the basis for our work

but differ in some parts, for example, by adding the augmentonly
section. In this section we describe the extended origin manifest

mechanism.

3.1 Overview
The origin manifest mechanism allows configuring an entire origin.

The origin provides this configuration as a manifest file under a

well-known location under the origin, according to the concept of

Well-Known URIs defined in RFC 5785 [25]. Browsers fetch this

manifest file to apply the configurations to every HTTP response

from that origin. To this end, all resource requests to the same

origin are put on hold until the respective file is downloaded in

order to take effect from the first request on. The manifest file is

cached to avoid re-fetching on every resource load. Browsers store

at most a single origin manifest per origin. A version identifier,

communicated via the Sec-Origin-Manifest HTTP header, is

used to distinguish manifest versions.

3.2 Configuration structure
An origin manifest is a file in JSON format which contains up to five

different sections: baseline, fallback, augmentonly, cors-preflight
and unsafe-cors-preflight-with-credentials. An example

manifest file is shown in Listing 1.

{

"baseline ": {

"Strict -Transport -Security ":"max -age=42",

},

"fallback ": {

"Content -Security -Policy ": "default -src 'none '",

"X-Frame -Options ": "SAMEORIGIN"

},

"augmentonly ": {

"Set -Cookie ": "secure"

},

"cors -preflight ": [ ],

"unsafe -cors -preflight -with -credentials ": [

{"Access -Control -Allow -Methods ": "OPTIONS , GET , POST",

"Access -Control -Allow -Origin ": "b.com",

"Access -Control -Allow -Headers ":"X-ABC",

"Access -Control -Max -Age": "1728000"}

]

}

Listing 1: Origin manifest file example

baseline. This section defines the minimum security level for

the supported security mechanisms. A web application can not

override these settings, only reinforce them. For example an origin

might want to exclusively require secure connections by adding the

Strict-Transport-Security header with an appropriate value

to this section.

The following headers can be used: X-Content-Type-Options,
X-Frame-Options, X-XSS-Protection, Timing-Allow-Origin,
Strict-Transport-Security, Content-Security-Policy,
Public-Key-Pins, and CORS headers.

fallback. This section defines default values for anyHTTP header.

They are only applied in case a web application does not provide

the respective HTTP header. The fallback section ensures the

presence of a policy for a mechanism but can also be used to reduce

header redundancy by relying on the definition in the manifest.

For example an origin may want to set the custom X-Powered-By
header on each HTTP response, to indicate which software is being

used on the server side. It can do this by placing the header in the

origin manifest.

There are no restrictions on which headers can be used in the

fallback list.
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augmentonly. Some HTTP headers can be a mixture of data and

security policy. An example is the Set-Cookie header which can

define the flags secure and/or httpOnly with the actual data. The

augmentonly section defines policies which are used to augment a

response header’s policy.

Currently we only consider one header for this section: Set-Cookie.
cors-preflight. This section defines a list of CORS preflight deci-

sions. Each CORS preflight response is represented as a JSON object

with the CORS headers as its key-value pairs. In contrast to the

previously described sections, cors-preflight is only used when

CORS preflights are to be sent. Before sending a CORS preflight, the

browser consults this list for a cached decision. In case no decision

matches the CORS preflight, is the actual web server consulted.

unsafe-cors-preflight-with-credentials. This section is in essence

the same as the cors-preflight section except that it defines

CORS pre-flight responses which also transmit credentials.

3.3 Client-side application
For any HTTP response, the fallback policy is applied first, by

filling in missing headers with the values from the fallback pol-
icy. Next, both baseline and augmentonly policies are applied by

strengthening their respective headers with the values from the

manifest file.

Both the unsafe-cors-preflight-with-credentials and
cors-preflight policies only act onCORS preflight requests.When

any of the rules in these sections match the CORS preflight request,

the request is not forwarded to the original destination, but handled

inside the browser instead. Besides this shortcut, the CORS mech-

anism itself remains untouched. Once a response for the CORS

preflight request is generated, the fallback and baseline policies
are also applied to it.

3.4 Misconfiguration
Origin manifests can be misconfigured. The mechanism itself only

provides a way to define certain configuration options. The respec-

tive policies are however not validated or otherwise analyzed for,

for example, conflicting policies. For example it is possible to define

X-Frame-Options policies “a.com” in the baseline section and

“SAMEORIGIN” in the fallback section of an origin manifest. It is

the responsibility of the origin administrator to ensure a meaningful

manifest file.

4 POLICY COMPARISON AND COMBINATION
The origin manifest mechanism’s baseline policy relies on combin-

ing security policies to make them stricter. The ability to determine

whether a security policy is stricter than another, implies the ability

to compare security policies.

In this section, we formalize the notion of comparing the strict-

ness of security policies, using the “at least as restrictive as” ⊑

operator. We then use the ⊑ operator to define the join ⊔ and meet
⊓ combinators, which can be used to combine security policies into

a weaker and stricter policy respectively.

4.1 ⊑ for policy comparison
We formalize the comparison of the security policies specified by

HTTP headers relevant in the context of originmanifest. Our formal

notation draws on the formalism by Calzavara et al. to describe

CSP [6, 7].

Somemechanisms comewith a reporting feature.We deliberately

do not take reporting into account because they do not affect the

enforcement of a policy.

4.1.1 Definitions. Let ⊑ stand for the binary relation between

two policies such that p1 ⊑ p2 if and only if everything allowed by

p1 is also allowed by p2. That is p1 is as strict or stricter than p2.
Not all security policies can readily be compared by strictness.

For example the policies Timing-Allow-Origin: https://a.com
and Timing-Allow-Origin: https://b.com both allow a single

but different origin. These polices are incomparable, making ⊑ a

partial (and not total) order.

We represent eachHTTP header as a tuple ⟨a1, · · · ,an⟩ of values,
so that ⟨a1, · · · ,an⟩ ⊑ ⟨b1, · · · ,bn⟩ ⇐⇒ ∀i . ai ⊑ bi .

We define ϕ as the empty value and ϕ ⊑ a for any a in the

same domain, unless otherwise specified. We assume H is the set

of header names, O is the set of web origins, M is the set of HTTP

methods, KP the set of key pins and P(KP) the superset of key pins.

Table 1 summarizes the comparison rules for all security head-

ers covered by the origin manifest mechanism, with the excep-

tion of Content-Security-Policy. Let us consider the headers
Access-Control-Max-Age and Set-Cookie as examples.

The Access-Control-Max-Age: a header has one argument:

a natural number a indicating the maximum allowed time that a

CORS preflight may be cached. In this example, a lower number

represents a stricter policy, so that a ⊑ b ⇐⇒ a ≤ b.
The Set-Cookie: key=value. . . a,b header has 2 arguments:

a indicates whether a cookie is marked Secure, and b whether

it is marked httpOnly. In this case, specifying either Secure or

httpOnly is stricter than not specifying either, while specifying

both Secure and httpOnly is stricter than any other combination.

4.1.2 Content Security Policy. Calzavara et al. [6, 7] formalize

the comparison of CSP policies, but omit CSP2.0 and CSP3.0 fea-

tures such as nonces, hashes and strict-dynamic. We reuse their

formalization, but make special arrangements to be compatible

with more modern web pages.

CSP nonces are by nature page specific which conflicts with the

fundamental idea of originmanifest.We therefore need to transform

every CSP into a policy without nonces. The goal is to have a policy

that allows at least what the original policy allows to not break web

pages. Nonces can be used to mark inline scripts as being included

by the developer. Thus a replacement of nonces must include the

’unsafe-inline’ flag. Nonces can also be used to permit loading of

scripts from a source file. Therefore a replacement of nonces must

include a whitelist with any possible URL. That is the wildcard *
but also the schemes http:, https:, ws:, wss: and data:.

Hashes enable inline scripts which hash matches with it but

can also enable any loaded script in combination with SRI checks.

Though hashes are not a problem in the context of origin mani-

fest directly they make the keyword ’unsafe-inline’ being ignored.

Therefore removing nonces from CSPs implies removing hashes

using the same rules.
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Table 1: Compositional comparison rules for security headers. ϕ is the empty value and ϕ ⊑ a for any a in the same domain,
unless otherwise specified. H is the set of header names, O is the set of web origins, M is the set of HTTP methods, KP the set
of key pins and P(KP) the superset of key pins. Tuples can be compared by comparing their components, since ⟨a1, · · · ,an⟩ ⊑
⟨b1, · · · ,bn⟩ ⇐⇒ ∀i . ai ⊑ bi

Header Notation With
Access-Control-Max-Age: a

⟨a⟩

a ⊑ b ⇐⇒ a ≤ b a,b ∈ N
Access-Control-Expose-Headers: a

a ⊑ b ⇐⇒ a ⊆ b

a,b ⊆ H

Access-Control-Allow-Headers: a a,b ⊆ H

Access-Control-Allow-Methods: a a,b ⊆ M

Timing-Allow-Origin: a a,b ⊆ O, ” ∗ ” = O

Access-Control-Allow-Origin: a a,b ∈ O, a ⊑ ” ∗ ”

Access-Control-Allow-Credentials: a a ∈ {”true”, ”f alse”}, ”f alse” ⊑ ”true”
X-Content-Type-Options: a a ∈ {”nosni f f ”,ϕ}, ”nosni f f ” ⊑ ϕ
X-Frame-Options: a a ∈ {”DENY ”, ”SAMEORIGIN ”,ϕ}

”DENY ” ⊑ ”SAMEORIGIN ” ⊑ ϕ

Set-Cookie: key=value. . . a,b

⟨a,b⟩

a, c ∈ {”secure”,ϕ}, ”secure” ⊑ ϕ,
b,d ∈ {”httpOnly”,ϕ}, ”httpOnly” ⊑ ϕ

X-XSS-Protection: a,b a, c ∈ {”1”, ”0”,ϕ}, ”1” ⊑ ϕ ⊑ ”0”

b,d ∈ {”mode = block”,ϕ}, ”mode = block” ⊑ ϕ

Strict-Transport-Security: max-age=a,b, c

⟨a,b, c⟩

a,d ∈ N, a ⊑ d ⇐⇒ a ≥ d
b, e ∈ {”includeSubDomains”,ϕ}, ”includeSubDomains” ⊑ ϕ
c, f ∈ {”preload”,ϕ}, ”preload” ⊑ ϕ

Public-Key-Pins: max-age=a,b, c a,d ∈ N, a ⊑ d ⇐⇒ a ≥ d
b, e ∈ {”includeSubDomains”,ϕ}, ”includeSubDomains” ⊑ ϕ
c, f ∈ P(KP) \ {}

The use of ’strict-dynamic’ disables a CSP’s whitelist, ’unsafe-

inline’ and does not block script execution except for HTML parser-

inserted scripts. Parser-inserted scripts are only allowed in com-

bination with a valid nonce or hash. Therefore we also need to

remove any occurrence of ’strict-dynamic’ from CSPs. We apply

the same rules as for nonces but also add the ’unsafe-eval’ flag

because to ensure scripts using eval and eval-like functions can

execute normally as in the presence of ’strict-dynamic’.

With these transformations, we can reuse the formalism by

Calzavara et al. without any modifications.

4.2 ⊔ and ⊓ for policy combination
When given two policies for a security mechanism, e.g. p1 = “a.com
b.com” and p2 = “a.com c.com” for the Timing-Allow-Origin
security mechanism, we have several options to combine them.

We can combine two security policies, so that the result allows

the union of what both policies allow. This combination would

weaken both policies and is called the ⊔ operation. In the example,

the result of p1 ⊔ p2 is “a.com b.com c.com”.
We can also combine two security policies, so that the result

disallows the union of what each policy disallows. In other words,

the resulting policy would allow the intersection of what both

policies allow. This combination would restrict or strengthen both

policies and is called the ⊓ operation. In the example, the result of

p1 ⊓ p2 is “a.com”.
The ⊔ operation can be used to calculate what minimum security

policy is currently enforced by the combination of the security

policies of all web pages in a web origin. Enforcing this minimum

security policy as the baseline policy would then not interfere

with the security policies already in place for each individual web

page.

The ⊓ operation can be used to explicitly calculate the security

policy that results from enforcing several security policies sequen-

tially. For instance, when a server sends several CSP policies to the

browser, the browser will consult each security policy sequentially

and only allow certain behavior if all CSP policies allow it. In effect,

the browser implicitly combined the policies with the ⊓ operation.

For the enforcement of the origin manifest mechanism, we must

explicitly calculate the result of the ⊓ operation because not all se-

curity mechanisms perform this operation implicitly. For instance,

when encountering two Strict-Transport-Security headers,

the browser will enforce the first and ignore the second. For correct

enforcement of the origin manifest mechanism, the second header

must also be enforced. Therefore, we need to apply the ⊓ operation

explicitly.

When we extract a baseline policy from the same scenario

with two security policies p2 and p3 in an HTTP response, we must

then apply the ⊔ operation with the current baseline p1 after first
explicitly applying the ⊓ operation on both security policies, in

essence computing: p1 ⊔ (p2 ⊓ p3).
Both the ⊔ and ⊓ operations are induced by the partial order ⊑,

described in Section 4.1, as is standard in literature [10].

p = p1 ⊓ p2 if

{
p ⊑ p1 and p ⊑ p2

∀x . x ⊑ p1 and x ⊑ p2 =⇒ x ⊑ p
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p = p1 ⊔ p2 if{
p1 ⊑ p and p2 ⊑ p

∀x .p1 ⊑ x and p2 ⊑ x =⇒ p ⊑ x

Note that ⊔ and ⊓ are intentionally undefined when HTTP head-

ers cannot be combined into a single header. Formally, the reason

is that the partial order ⊑ does not form a lattice [10], which we

demonstrate on the respective examples for ⊔ and ⊓.

For ⊔, consider CSP policies csp1 =“script-src a.com” and
csp2 =“script-src ’strict-dynamic’ ’nonce-FOO=’”. Policy
csp1 only allows scripts from a.com whereas csp2 allows any script

with a valid nonce and any script loaded from a script with a valid

nonce. Policies csp1 and csp2 cannot be merged into a single header

using the ⊔ operation: CSP ignores whitelists in the presence of

strict-dynamic for csp2, but would at the same time have to guar-

antee that scripts are only loaded from a.com for csp1.
For⊓, consider Public-Key-Pins policies “pin-sha256="pin1";

max-age=42” and “pin-sha256="pin2"; max-age=42”. By defini-

tion there should be no public key for which both fingerprints are

valid. Similarly to the ⊔ above, note that the result of the ⊓ in this

case is intentionally undefined. Introducing a bottom element in

the partial order as a result of the ⊓ would be inappropriate, as the

goal for this case is to flag an anomaly for developers rather than

returning an overly prohibitive result that no communication is

allowed.

5 PROTOTYPE IMPLEMENTATIONS
To determine the feasibility of the origin manifest mechanism, we

created prototype implementations of the ⊔ and ⊓ combinators,

the client-side enforcement mechanism, the server-side manifest

handling as well as and automated manifest learning tool on the

server-side. These implementations are described in this section.

5.1 Client-side enforcement

Figure 1: Architectural overview of our prototype imple-
mentations. The threemeasurement points “pre”, “mid” and
“post” are used during the evaluation only (Section 6.3).

As described in Section 3, the origin manifest describes origin-

wide security settings for a web origin, and is stored in a file on the

server side. The application of these security settings happens on

the client-side, ideally in the user’s browser.

The source code for a browser, such as e.g. Chromium, contains

millions of lines of C++ code [4]. Modifying this source code to

implement a new security mechanism is a difficult task. Because we

are only interested in studying the feasibility of the origin manifest

mechanism, and in order to avoid the difficulties associated with

modifying browser source code, we opted to implement the origin

manifest mechanism as a client-side proxy instead. Besides reducing

the complexity of the prototype implementation, another advantage

of this setup is that it is independent of the browser used.

Our clientproxy is located on the client-side and intercepts all

traffic from and to the browser, as seen in Figure 1. The clientproxy

handles the origin manifest retrieval and application as described

in Section 3:

• For requests from the browser towards a web server, the

clientproxy adds a Sec-Origin-Manifest header to indi-

cate the presence of the origin manifest mechanism and to

communicate its version of the manifest file.

• For responses from the web server to the browser, the client-

proxy interprets the origin manifest and applies it to the

response headers, using the combinator functions. When the

web server indicates the presence of a new origin manifest,

the clientproxy retrieves the new version automatically and

applies it to the current as well as future HTTP responses.

• Any CORS preflight requests sent by the browser that match

the rules of the origin manifest, are also handled by the client-

proxy without forwarding the request to the web server.

We implemented the clientproxy using mitmproxy v2.0.2 [9] as

a mitmproxy addon script, using python v3.5.

5.2 Server-side manifest handling
As a complement to the clientproxy, we also implemented the origin

manifest mechanism on the server-side. Instead of modifying the

source code of any particular web server software, we chose to

implement the server-side prototype as a proxy. This serverproxy is

located on the server-side, intercepting and modifying any traffic

to the web server, as seen in Figure 1.

The serverproxy has three functions:

• serve the origin manifest file to any web client requesting it,

• inform the web clients about the version of the latest origin

manifest, through the Sec-Origin-Manifest header, and

• strip the HTTP response headers received from the web

server according to the fallback section in the origin man-

ifest to reduce bandwidth towards the web client.

Just like the clientproxy, the serverproxy was implemented as a

mitmproxy v2.0.2 [9] addon script, using python v3.5.

5.3 Automated manifest generation from
observed traffic

We implemented a prototype for an automated origin manifest

generator which can be used to assist security officers with the

creation of an origin manifest. Our implementation does not use

any advanced AI or machine learning techniques to “learn”. Instead,

we apply a pragmatic approach to provide the security officer with

a reasonable starting point. The manifest generator hooks into the

serverproxy, observing and storing the HTTP headers for all HTTP

requests and responses for the back-end web servers for which it is

proxying traffic.

After a data collection phase, the manifest generator analyzes the

observed HTTP headers and generates origin manifest files for all

observed origins. Then the origin manifest mechanism is activated

in the serverproxy, so that it will respond to requests related to the
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origin manifest mechanism such as manifest retrieval and sending

the manifest version via the Sec-Origin-Manifest header.

The automated generation of the manifest consists of three parts:

• Firstly, the fallback section is generated by enumerating

all HTTP headers and their values that occur in a certain

ratio (cutoff) observed responses have in common. By de-

fault we use the cutoff value 51%. Multiple responses for

the same requested URL are counted only once and only

common headers and values are considered. To prevent ori-

gin manifest creation based on a single HTTP response, we

disregard origins with less than minsize observed HTTP

responses. By default we use the minsize of 2.
• Secondly, the baseline and augmentonly sections are gen-

erated by combining observed security headers and values

from HTTP responses, using the ⊔ operator described in

Section 4.

• Lastly, the unsafe-cors-preflight-with-credentials
and cors-preflight sections are generated from the ob-

served HTTP requests and their responses.

Note that for the manifest generation, we only consider those

headers that are applicable to the given origin and content-type. For

instance, a CSP header set on an HTTP response which does not

have a Content-Type of text/html, is ignored. Similarly, HSTS

headers in HTTP responses on a non-HTTPS origin are ignored.

Some HTTP headers have a large impact on the functioning

of HTTP itself and how resources are handled and displayed in

the browser. Because it makes no sense to place these headers in

the origin manifest, they were blacklisted for automated manifest

generation. These headers are: Content-Encoding, Content-Type,
Content-Length and Content-Disposition.

The automated origin manifest generator is implemented as part

of a mitmproxy v2.0.2 addon script using python v3.5.

5.4 Limitations and considerations
The implementations of the clientproxy and serverproxy are fully

functional, suffering only minor limitations:

First, we are unable to differentiate between authenticated and

unauthenticated CORS preflight requests/responses for the spe-

cific case when the browser is using client-side SSL certificates

for the given origin. This limitation is intrinsic to our setup using

proxies breaking the SSL tunnel. Luckily, the use of client-side SSL

certificates is not widespread on the Web [31]. Furthermore, imple-

menting the origin manifest mechanism as a browser modification

will not suffer from the same limitation.

Secondly, we must disable strict certificate checking (such as

HPKP), simply because of our need to alter both HTTP and HTTPS

traffic “in flight”. This limitation is again intrinsic to our setup and

is no longer an issue when the origin manifest is implemented as a

browser modification.

Thirdly, we disable HTTP/2 support in mitmproxy, which it

supports by default. Our implementationsworkwithHTTP/2 just as

well as with HTTP/1. However, HTTP/2 offers some improvements

over HTTP/1 which we do not take advantage of in our prototypes

as currently implemented.

Fourthly, our implementation does not limit itself to only HTTPS

connections as required in Section 3. For this feasibility study, we do

not wish to limit ourselves to only HTTPS, but are also interested

to see how the origin manifest mechanism would behave for non-

HTTPS origins.

Lastly, note that the origin manifest generator is a proof of con-

cept tool to assist origin security officers in finding a good starting

point for composing a meaningful origin manifest based on the

currently hosted web applications. We recommend that security

officers review generated origin manifests before deployment, and

we do not advocate deploying this tool in production environments

to generate origin manifests in “real time”.

6 EVALUATION
We evaluate the origin manifest mechanism as well as our proto-

types with several experiments.

Firstly, we evaluate that our prototypes are working properly

and do not break web pages in unexpected ways.

Secondly, we perform a longitudinal experiment to determine if

the application of the origin manifest mechanism is practical.

Thirdly, we evaluate the performance of the origin manifest

mechanism bymeasuring its effect on network traffic during a large-

scale experiment in which we apply the origin manifest mechanism

to the Alexa top 10,000 domains.

All data sizes refer to the uncompressed data in bytes because of

our experiment setup.

6.1 Functional evaluation
We evaluated the correctness of our implementation by manually

inspecting a randomly chosen subset of the Alexa top 1 million

domains and their respective websites, with and without origin

manifest.

Fully automated testing to verify the correctness of the imple-

mentation was deemed impractical, because typical web pages are

often dynamically generated with e.g. advertising, which makes it

difficult for an algorithm to determine whether a web application

is still operating and rendered correctly before and after applica-

tion of the origin manifest mechanism. The use of an ad-blocker

such as AdBlock [1], would alleviate some of these impracticalities.

However, advertising is omni-present on the Web and removing it

from the web traffic would interfere with the normal operations

of web pages, and thus also with our testing of the origin manifest

mechanism.

6.1.1 Setup. The evaluation progressed in two phases: an in-
teractive phase and a visual inspection phase. Both these ex-

periments used the setup as shown in Figure 1, where browser web

traffic is forwarded through both the clientproxy and serverproxy.

The interactive phase used a regular browser (Chrome version

63.0.3239.132) in incognito mode, operated by a human. The visual

inspection phase used the same browser, but operated by Selenium

3.8.1 [30]. The results of this phase were human inspected.

Interactive phase. We randomly selected 100 domains from the

Alexa top 1 million for this experiment. For each of these domains,

we visited the top-most page, e.g. http://example.tld for the exam-

ple.tld domain, and interacted with the web page, mimicking the

behavior of a typical user without authenticating for that web site.

http://example.tld
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The clientproxy and serverproxy both respond to internal URLs

that allow state inspection. These inspection tools were used to

determine when enough data had been collected: we aimed to

navigate on a web domain at least five times and gather data for at

least ten web origins.

When enough data was collected, the origin manifest mechanism

was activated in both proxies. The browser was then restarted to

clear caches and the web pages visited again. During the second

visit, we inspected the pages both visually, and tested the func-

tionality of the web page by triggering menus, playing videos, and

otherwise interacting with the web page as an ordinary visitor.

Visual inspection phase. We randomly selected another 1000 do-

mains from the Alexa top 1 million for this experiment. Like in

the interactive phase, we also visited the top-most page before and

after the activation of the origin manifest mechanism.

However, in this visual inspection phase, we simply took a screen-

shot of the web page using Selenium, before and after activation

of the origin manifest mechanism. The browser was restarted in

between visits to clear any caches. We repeated these steps four

times to have reliable results in the face of dynamic content, such

as advertising, resulting in eight screenshots. The screenshots were

combined into a single image with four rows of two images: the

“before” and “after” screenshots side by side.

The resulting images were inspected visually one by one to

determine whether web pages exhibited unusual rendering artifacts.

Any images in which the screenshots appeared to differ before and

after activation of the origin manifest mechanism, were put aside

and their domains revisited using the same technique as in the

“interactive phase”.

6.1.2 Results. Our manual and visual inspections confirm that

our implementations work correctly. From the 1100 domains we

visited, we only encountered abnormal behavior in three cases. In

each of these cases, the problem was due to the automated learner

not receiving sufficient learning input, which could have been easily

prevented by changing a parameter. As expected, the automated

origin manifest learner and generator tool can be used as a good

starting point to formulate an initial origin manifest, although we

recommend that the generated manifest should still be reviewed

by a human to ensure correct configurations.

6.2 Longitudinal study
We define the stability of a header as the average amount of time

that we observe the header to be present and its value unchanged.

For instance, a stability of 5 days indicates that the header was

observed with the same value for an average of 5 days in a row.

Likewise, the stability of a manifest file indicates the average life-

time of a manifest file.

The stability of HTTP headers has an impact on the fallback
section in manifest files and their stability. To be usable in practice,

manifest files should be as stable as possible to reduce network

traffic and workload of the security officer.

By the size of a header, we mean the total amount of bytes it

occupies including its header name.

We conducted a longitudinal study over 100 days to examine the

frequency, stability and size of HTTP headers and auto-generated

manifest files in the real world.

6.2.1 Setup. Weused OpenWPM [11], which is based on Firefox,

to visit a set of 1000 domains from the Alexa top 1 million.

The domain list consisted of the top 200 domains, 200 domains

randomly picked from the top 201 – 1,000, 200 domains randomly

picked from the top 1,001 – 10,000, 200 domains randomly picked

from the top 10,001 – 100,000, and finally another 200 domains

randomly picked from 100,001 – 1,000,000.

For each domain we visited its top-most page, e.g. for the ex-

ample domain example.tld we visited http://example.tld. We

set OpenWPM to collect all request and response headers and ran

it daily between October 5th 2017 and January 12th 2018, for a

total of 100 days. We did not use our origin manifest prototype

implementation during data collection.

6.2.2 Results.
HTTP headers. In total we collected 12,322,019 responses over

100 days. We visited a total of 3,575,043 unique URLs (25,533 origins)

of which 20,201 URLs (3,682 origins) where visited every day. We

counted 2,423 different header names (case-insensitive).

We only consider the headers in responses for those URLs which

were observed for every day in our experiment. The frequency

of HTTP headers indicates how often they were observed in the

combined set of all responses. The stability of headers is computed

over all observed responses.

Table 2: Selection of popular headers and security headers
with their popularity rank, frequency, average size (bytes)
and stability (days).

rank header freq. avg. size stability
3 server 87.39% 16.13B 32.14d

8 accept-ranges 47.57% 18.03B 68.06d

9 connection 44.61% 19.68B 43.01d

10 x-firefox-spdy 43.55% 16.01B 62.07d

33 x-powered-by 5.96% 21.70B 34.77d

14 access-control-allow-origin 29.95% 32.03B 67.20d

15 x-content-type-options 25.33% 29.02B 77.10d

16 x-xss-protection 23.48% 28.06B 67.78d

19 timing-allow-origin 19.31% 22.31B 26.41d

24 set-cookie 11.63% 395.09B 1.32d

26 strict-transport-security 8.03% 52.52B 22.97d

32 x-frame-options 5.98% 24.15B 76.51d

42 content-security-policy 2.69% 566.50B 5.84d

380 public-key-pins 0.04% 191.25B 23.21d

Table 2 shows a selection of five popular HTTP headers, as well

as all security headers relevant to origin manifest. The selected

popular HTTP headers are potential candidates for use in origin

manifest. We omitted headers such as Date and Content-Type
which are highly response dependent. For each header, we list their

observed frequency, stability and size. A longer list of the top 50

most popular headers can be found in Appendix A.

From these results, we can make two observations:
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Firstly, some of the average header sizes are quite large. For instance,

the Set-Cookie, Content-Security-Policy and Public-Key-Pins
headers take up hundreds of bytes on average. This gives credence

to the claim from the origin policy draft, that HTTP headers can

occupy multiple KiB per request.

Secondly, some headers occur frequently and have a large stability.

For instance, the Server header occurs in 87.39% of all observed

HTTP responses and has a stability or average lifetime of 32.14

days. This evidence also helps support the claim from the origin

policy draft that HTTP headers are often repeated.

Origin Manifests. We used the automated manifest generator

(See Section 5.3) to create origin manifests for each day. As was the

case before, we only used headers from responses for URLs which

recurred every day.

The minsize parameter was kept to its default of 2 so that no

origin manifests are generated based on less than two observed

responses. We evaluated the effect of the cutoff parameter for

values of 50%, 70% and 90%, indicating the minimum size of the

majority of responses that must agree on a header value before it

is adopted into the fallback section of the manifest.

Table 3: The average size in bytes, average stability and the
amount of fully stable vs. total number of non-empty gener-
ated manifests, for automatically learned origin manifests
for different cutoff parameter values.

cutoff average
size

average
stability

stable vs. all
manifests

50% 408.13B 17.87d 883 / 1500

70% 304.17B 18.40d 850 / 1494

90% 282.89B 17.21d 819 / 1493

Table 3 shows the average size and stability, as well as the number

of fully (100 days) stable versus all generated non-empty manifests.

To measure the individual influence of headers on the stability of

manifests, we analyzed the stability of headers in the fallback,
baseline and augmentonly sections of the generated manifests.

For this analysis, we used minsize 2 and cutoff 50%.

Table 4 shows the results for the same selection of HTTP head-

ers and the security headers as before. A longer list of the top 50

most popular headers for the fallback section can be found in

Appendix A.

Both sections unsafe-cors-preflight-with-credentials and

cors-preflight are not listed because of their low inclusion fre-

quency in manifests: 0.07% and 0.66%, respectively.

Based on the results from this experiment, we again make some

observations:

Firstly, the cutoff parameter affects the size and stability of auto-

generated origin manifests, which indicates that the generated

manifests should not be used as-is. We recommend a quality inspec-

tion by a security officer before putting an auto-generated origin

manifest into production.

Secondly, the average stability of the generated origin manifests

is around 18 days, which indicates that modifications to the origin

manifest are only needed once in a while, reducing the workload

of a security officer.

Table 4: Selection of popular headers and security headers
with their popularity rank, occurrence frequency (%), aver-
age size (bytes) and average stability (days) for the fallback,
baseline and augmentonly sections.

rank header freq. avg. size stability
fallback (non-security headers)

1 server 86.11% 16.84B 31.70d

5 accept-ranges 58.46% 18.05B 50.33d

6 connection 55.87% 19.68B 38.71d

10 x-firefox-spdy 31.87% 16.02B 47.60d

24 x-powered-by 7.99% 22.73B 28.32d

fallback (security headers)

13 CORS headers 23.54% 30.42B 60.31d

16 x-content-type-options 15.97% 29.08B 75.01d

22 strict-transport-security 9.81% 51.39B 39.11d

28 timing-allow-origin 5.55% 26.34B 33.62d

32 x-frame-options 4.92% 25.12B 67.42d

33 x-xss-protection 4.12% 32.01B 29.70d

49 content-security-policy 0.95% 693.30B 5.54d

201 public-key-pins 0.07% 210.49B 4.30d

baseline
1 CORS headers 28.13% 76.40B 51.24d

2 x-content-type-options 18.18% 29.00B 66.24d

3 x-frame-options 13.45% 24.40B 83.86d

4 strict-transport-security 12.79% 48.25B 45.73d

5 x-xss-protection 10.19% 28.32B 78.81d

6 timing-allow-origin 6.25% 26.29B 48.78d

7 content-security-policy 2.58% 591.33B 13.71d

8 public-key-pins 0.09% 194.84B 49.50d

augmentonly

1 set-cookie 15.21% 19.01B 44.33d

Thirdly, the average origin manifest is only a few hundred bytes

in size, which is quite small in comparison to the content served

by the typical web origin. This indicates that the incurred network

traffic overhead may be manageable.

6.3 Performance measurement
The main goal of the origin manifest mechanism is to improve secu-

rity. However, the volume of network traffic is increased by trans-

missions of the origin manifest file and the Sec-Origin-Manifest
header, and decreased because of the removal of redundant headers

and cached CORS preflight requests. This net change in network

traffic may have an unintended overhead with a negative impact.

In this section we are interested in measuring the impact of the ori-

gin manifest mechanism on the volume of network traffic observed

between client and server. Note that we are not concerned with

runtime overhead because our proof-of-concept implementations

are not implemented as a browser modification as discussed in

Section 5.1.

6.3.1 Setup. For this experiment, we augment the setup as de-

scribed in Section 5 with extra proxies between browser and client-

proxy (“pre”), clientproxy and serverproxy (“mid”), and serverproxy

and the Web (“post”). This setup is depicted in Figure 1. The extra
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proxies (“pre”, “mid” and “post”) only perform logging and allow

us to make measurements about the web traffic before and after it

is modified by the origin manifest mechanism.

Instead of visiting single web pages, we simulate web browsing

sessions where a user visits multiple related web pages. We create

the URLs in theseweb browsing session by querying Bing for the top

20 pages in each of the Alexa top 10,000 domains. A web browsing

session is then the set of pages returned by Bing for a single top

Alexa domain.

Using Selenium, we automate a Chrome browser to visit each URL

in the web browsing session in turn. This process is repeated four

times: first, we visit the URLs just after clearing the browser cache

(“before-uncached”), followed by a second visit where we do not

clear the browser cache (“before-cached”). These first two phases

serve to train the automated learner. Then, we instruct the server-

proxy to generate origin manifests as described in Section 5.3 and

the origin manifest mechanism is activated. We clear the browser

cache and visit the URLs again (“after-uncached”) and then a fi-

nal time without clearing the cache (“after-cached”). These four

different phases are designed to measure traffic before and after

the application of the origin manifest, as well as the impact of the

browser cache on the volume of web traffic.

Themeasurement proxies (“pre”, “mid” and “post”) record the HTTP

headers of all requests and responses in each of the four phases of

the experiment. Because of remote network failures, it is possible

that some URLs in a web browsing session can not load. We limit

ourselves to only those web browsing sessions that were able to

successfully visit all the URLs. Furthermore, because of dynamic

content such as advertising, the web resources loaded during a

web browsing session can differ. For our statistics, we only con-

sider those resources that were loaded in all four phases of a web

browsing session.

6.3.2 Results. Bing returned 180,831 URLs of which 180,443

were unique, resulting in an average of 18.04 URLs per Alexa domain

and web browsing session.

From the 10,000 top Alexa domains we intended to use as a basis

for creating web browsing sessions, only 8,983 were usable. The

remaining 1,017 domains did not yield any URLs from Bing, or their

respective web browsing session did not deliver reliable results over

all four phases of the experiment.

The results of this measurement study are shown in Table 5.

On the first visit, without using previously cached web traffic, we

measured a total traffic of 34.3MiB on average per web brows-

ing session, of which 2.1MiB is occupied by HTTP headers and

2.5KiB by CORS preflight traffic. After application of the origin

manifest mechanism, we see an average of 128.5KiB of web traffic

related to the retrieval of origin manifests files, which includes the

Sec-Origin-Manifest header in all requests and responses.

As expected, the volume of network traffic for the HTTP head-

ers decreases both because of the use of the origin manifest, and

also because of the browser cache. Without the browser cache, the

header-only traffic decreases from 2.1MiB to 1.8MiB after appli-

cation of the origin manifest mechanism, which is a reduction of

13.84%. When using the browser cache, the header-only traffic is

first reduced by 10.95% to 1.9MiB, and by 24.00% to 1.6MiB after

application of the origin manifest mechanism.

Table 5: Average volume of web traffic measured for the
8,983 web browsing sessions, before and after application of
the origin manifest mechanism, without (“uncached”) and
with (“cached”) using the browser cache. Percentages are cal-
culated per row, in relation to the uncached traffic before
application of the origin manifest mechanism.

Traffic type uncached cached
Without origin manifest

Headers only 2.1MiB (100.00%) 1.9MiB (89.05%)

Origin manifests — (—) — (—)

CORS preflights 2.5KiB (100.00%) 2.2KiB (85.88%)

Total 34.3MiB (100.00%) 27.6MiB (80.57%)

With origin manifest
Headers only 1.8MiB (86.16%) 1.6MiB (76.00%)

Origin manifests 128.5KiB (—) 78.5KiB (—)

CORS preflights 470.1B (18.13%) 421.0B (16.23%)

Total 34.0MiB (99.28%) 27.3MiB (79.81%)

The traffic overhead generated by the origin manifest mechanism

is due to the transmission of origin manifest files as well as the

Sec-Origin-Manifest header in requests and responses. We mea-

sured an average of 128.5KiB during the uncached phase, which

is reduced to 78.5KiB after the browser cache is activated and the

browser already has the latest version of each origin manifest file

cached.

Requests and responses for CORS preflights before application

of the origin manifest mechanism amount to 2.5KiB and 2.2KiB

(85.88%) for uncached and cached respectively. This volume of traffic

is reduced by 81.87% to 470.1B and by 83.77% to 421.0B for uncached

and cached respectively, when the origin manifest mechanism is in

use.

All in all, the total size of all web traffic observed throughout a web

browsing session, drops from 34.3MiB by 0.72% to 34.0MiB due to

application of the origin manifest mechanism, and from 27.6MiB to

27.3MiB (80.57% to 79.81%) when the browser cache is used.

7 DISCUSSION
The introductory example use case in Section 1 highlighted the need

for a mechanism such as origin manifest, which the web security

community is currently drafting. With our evaluation of this draft,

we answer some research questions in order to justify and improve

the origin policy’s standard draft proposal.

Through our prototype implementation, we evaluated the mecha-

nism in practice and conclude that it is possible to deploy without

breaking any websites in unexpected ways. The prototype in form

of web proxies indicates that adoption by actual browsers is indeed

feasible.

Our large-scale studies confirm suspicions in the standard draft

that using origin manifests in a real world setting does reduce the

amount of network traffic. But the reduction is rather insignifi-

cant in practise. These large-scale studies also showed that origin

manifests can be generated in an automated way by observing and

learning from web traffic for a particular web origin. The auto-

generated manifests serve as a good starting point for an origin

security officer to formulate and fine-tune an origin manifest. We
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remind however, that our automated origin manifest generator is

only a proof of concept tool and we recommend human inspection

of its output before deployment. Furthermore, the results from our

experiments show that the auto-generated origin manifests do not

change too often over time. The average stability of around 18 days

thus makes the origin manifest mechanism usable in practice.

Our practical evaluation of the standard draft revealed two over-

sights in the draft proposal which should be addressed to make the

origin manifest mechanism more robust and practical. First, the

standard draft does not explicitly specify how to resolve conflicts

between security policies set in the origin manifest by the origin

security officer, and security policies set by the web developer on

individual web pages. To this end we formalized the rules governing

the comparison and combination of security policies. Second, we

realized that the baseline policies in the origin manifest do not work

well for e.g. cookies, which motivated us to introduce augmentonly
policies. With both these extensions we actively contribute to im-

proving the design and practicality of origin manifest.

8 RELATEDWORK
Our work is based on the origin policy proposal which currently

exists as a standard draft [41] accompanied by an explainer doc-

ument [16]. The formalism for CSP is taken from the work by

Calzavara et al. [6]. In this section we discuss other works and

technologies, and their relation to the origin manifest mechanism.

Site-Wide HTTP Headers. Mark Nottingham’s proposal of Site-

Wide HTTP Headers [24] has many similarities with the origin

policy. In fact, his draft and input have influenced the origin policy

draft as mentioned in the draft’s acknowledgments. Due to the

many similarities of both proposals we believe that our results

are also equally insightful to both the work on Site-Wide HTTP

Headers as well as origin policy.

Web App Manifest. The Web App Manifest [37] is an upcoming

standard to configure web applications and to define for example

name, icons and other layout options. It stands to reason to consider

integrating the features of origin manifest into Web App Manifest.

However there are fundamental differences between both technolo-

gies. For example, Web AppManifest allows developers to configure

a web application, origin manifest sets a configuration for the entire

web origin. Another example is that Web App Manifests can be

downloaded out-of-band. Origin manifests must always be fetched

before actual content is loaded because the security configurations

might affect current and subsequent resource fetches.

Server-side configuration. Web application configuration files like

ASP.NET’s Web.config are written by web application developers

for a specific web application, not an entire web origin as origin

manifests. Note that the origin manifest mechanism does not try to

replace any web application specific configuration mechanisms but

adds a way for the origin to express its own requirements.

Server configurations, like for an Apache server, are not necessar-

ily per origin. Nevertheless, one could achieve the same effects as

with an origin manifest through server configurations or server-

side proxies which enforce, for example, the presence of certain

HTTP headers or specific header values. Servers and proxies can

set response specific values, for example CSP nonces, which is not

meaningful in the context of an origin manifest. The advantage

of the origin manifest mechanism is that it provides a mechanism

independent of the concrete server-side architecture and requires

only minimal changes for deployment. With our combinator func-

tions the origin manifest mechanism does not conflict with server-

and response-specific configurations.

Security evaluation. There are several empirical studies which

analyze the deployment of security mechanisms on the web [2, 17,

21, 31, 39, 42]. Our work distinguishes from theirs in that we do not

analyze the usage of particular security mechanisms, but extract

security related headers solely for the automated generation of

origin manifests. We do not evaluate the quality of the particular

security policies themselves.

HTTP performance. In order to improve network performance,

different HTTP compression methods have been proposed both in

academia [5, 22, 32, 41] and industry with HTTP/2 [23]. HTTP/2’s

header compression removes the redundancy of sending the same

header again and again. The origin manifest mechanism can also

be used to reduce the sending of headers in every response to the

client through the fallback section. However the origin manifest

mechanism’s primary goal is not to improve performance but to

raise the security level of an entire web origin.

There are also other HTTP performance improvements like the

ETag cache control mechanism [15], which are addressed in the

origin manifest draft [16].

Automated policy generation. Automated generation of policies

from existing setups is not a novel idea. E.g. there exist several

solutions to find a suitable CSP [14, 20, 27]. The purpose of these

tools is to generate a policy when none exists yet. The purpose of

the automated origin manifest generator is to generate an origin

manifest from already existing policies.

9 CONCLUSION
We provide a first evaluation of the origin manifest mechanism from

a current standard draft to enforce origin-wide configurations in

browsers. Our evaluation has helped us identify inconsistencies in

the draft, leading us to propose a systematic approach to comparing

and combining security policies, including general join and meet

combinators, as well as augmentonly policies addressing corner

cases.

We formally define rules to compare and merge HTTP security

policies, which serves as the basis for a client-side enforcement

mechanism, a server-side implementation, and an automated origin

manifest generation tool.

We use our prototype implementations to evaluate the origin

manifest mechanism in a 100-day longitudinal study of popular

websites, and a large-scale performance evaluation study on the

Alexa top 10,000.

We find that the origin manifest mechanism is an effective way

of raising the security level of a web origin and that the origin

manifest for a typical origin is stable enough to be of practical use.

As a bonus benefit, the origin manifest mechanism slightly reduces

the amount of network traffic.
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Table 6: The top 50 most popular HTTP headers with rank,
occurrence frequency (%), average size (bytes) and stability
(days).

rank header freq. avg. size stability
1 date 98.90% 33.00B 1.04d

2 content-type 95.94% 27.93B 81.80d

3 server 87.39% 16.13B 32.14d

4 content-length 85.57% 17.74B 18.11d

5 cache-control 80.77% 36.54B 11.63d

6 expires 66.11% 35.44B 1.33d

7 last-modified 64.09% 42.04B 10.99d

8 accept-ranges 47.57% 18.03B 68.06d

9 connection 44.61% 19.68B 43.01d

10 x-firefox-spdy 43.55% 16.01B 62.07d

11 etag 43.07% 26.59B 10.84d

12 content-encoding 35.39% 20.00B 55.19d

13 vary 34.10% 19.80B 51.40d

14 access-control-allow-origin 29.95% 32.03B 67.20d

15 x-content-type-options 25.33% 29.02B 77.10d

16 x-xss-protection 23.48% 28.06B 67.78d

17 age 22.90% 8.10B 1.16d

18 p3p 19.54% 98.52B 59.74d

19 timing-allow-origin 19.31% 22.31B 26.41d

20 alt-svc 18.14% 140.63B 22.20d

21 pragma 17.03% 13.79B 68.83d

22 x-cache 15.54% 19.72B 11.80d

23 via 12.84% 50.53B 2.48d

24 set-cookie 11.63% 395.09B 1.32d

25 cf-ray 8.50% 26.00B 1.05d

26 strict-transport-security 8.03% 52.52B 22.97d

27 cf-cache-status 7.51% 19.01B 8.43d

28 transfer-encoding 6.98% 24.00B 27.23d

29 keep-alive 6.81% 24.70B 2.79d

30 location 6.44% 124.62B 5.50d

31 access-control-allow-credentials 6.17% 36.08B 71.68d

32 x-frame-options 5.98% 24.15B 76.51d

33 x-powered-by 5.96% 21.70B 34.77d

34 x-amz-cf-id 5.03% 67.00B 1.06d

35 access-control-allow-methods 5.01% 42.23B 68.29d

36 content-disposition 4.76% 50.42B 51.31d

37 x-served-by 4.01% 39.00B 1.19d

38 access-control-allow-headers 3.64% 81.51B 88.67d

39 x-cache-hits 3.35% 16.05B 1.49d

40 access-control-expose-headers 3.30% 64.24B 58.63d

41 x-timer 3.19% 33.23B 1.06d

42 content-security-policy 2.69% 566.50B 5.84d

43 x-amz-request-id 2.45% 32.30B 2.62d

44 x-varnish 2.44% 25.79B 1.27d

45 x-amz-id-2 2.43% 85.90B 2.62d

46 x-fb-debug 2.36% 98.00B 1.00d

47 content-md5 2.24% 35.08B 3.53d

48 cf-bgj 1.71% 13.49B 38.81d

49 cf-polished 1.71% 29.87B 38.76d

50 fastly-debug-digest 1.60% 83.00B 21.33d

Table 7: The top 50 most popular headers for origin mani-
fest fallback section with rank, occurrence frequency (%),
average size (bytes) and stability (days).

rank header freq. avg. size stability
1 server 86.11% 16.84B 31.70d

2 date 74.18% 33.00B 1.13d

3 content-type 70.74% 29.46B 50.60d

4 cache-control 70.07% 35.13B 24.33d

5 accept-ranges 58.46% 18.05B 50.33d

6 connection 55.87% 19.68B 38.71d

7 content-encoding 51.78% 20.00B 57.17d

8 vary 48.47% 20.36B 42.87d

9 expires 38.80% 35.17B 1.65d

10 x-firefox-spdy 31.87% 16.02B 47.60d

11 last-modified 30.84% 41.97B 5.74d

12 content-length 29.36% 17.25B 8.02d

13 access-control-allow-origin 23.54% 30.42B 60.31d

14 x-cache 18.74% 17.69B 11.03d

15 etag 17.32% 28.01B 4.81d

16 x-content-type-options 15.97% 29.08B 75.01d

17 p3p 14.45% 83.32B 69.90d

18 transfer-encoding 13.14% 24.00B 22.62d

19 via 12.91% 39.40B 3.00d

20 set-cookie 11.26% 232.79B 1.34d

21 pragma 11.19% 13.66B 60.42d

22 strict-transport-security 9.81% 51.39B 39.11d

23 cf-cache-status 8.73% 19.18B 9.08d

24 x-powered-by 7.99% 22.73B 28.32d

25 age 7.32% 6.60B 2.02d

26 alt-svc 6.02% 117.99B 18.36d

27 access-control-allow-methods 5.89% 41.27B 56.22d

28 timing-allow-origin 5.55% 26.34B 33.62d

29 access-control-allow-credentials 5.15% 36.22B 57.81d

30 keep-alive 5.08% 23.30B 10.90d

31 access-control-allow-headers 4.97% 74.45B 78.38d

32 x-frame-options 4.92% 25.12B 67.42d

33 x-xss-protection 4.12% 32.01B 29.70d

34 location 4.07% 71.97B 3.49d

35 access-control-expose-headers 2.61% 74.06B 49.50d

36 x-cache-hits 2.44% 14.85B 3.46d

37 access-control-max-age 2.31% 26.46B 81.00d

38 x-served-by 2.27% 35.32B 1.87d

39 x-amz-cf-id 1.82% 67.00B 1.20d

40 content-language 1.66% 19.61B 21.05d

41 cf-ray 1.65% 26.00B 1.05d

42 x-amz-id-2 1.24% 85.98B 3.04d

43 x-amz-request-id 1.24% 31.99B 3.04d

44 x-aspnet-version 1.23% 24.99B 70.71d

45 cf-bgj 1.19% 13.61B 49.50d

46 x-timer 1.08% 33.83B 1.30d

47 x-ua-compatible 1.07% 28.04B 68.54d

48 x-varnish 0.96% 25.11B 1.19d

49 content-security-policy 0.95% 693.30B 5.54d

50 link 0.93% 141.77B 8.16d
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