WebJail: Least-privilege Integration of Third-party
Components in Web Mashups

Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, Wouter Joosen
IBBT-Distrinet, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
Steven.VanAcker@cs.kuleuven.be

ABSTRACT

In the last decade, the Internet landscape has transformed
from a mostly static world into Web 2.0, where the use of
web applications and mashups has become a daily routine
for many Internet users. Web mashups are web applications
that combine data and functionality from several sources
or components. Ideally, these components contain benign
code from trusted sources. Unfortunately, the reality is very
different. Web mashup components can misbehave and per-
form unwanted actions on behalf of the web mashup’s user.

Current mashup integration techniques either impose no
restrictions on the execution of a third-party component, or
simply rely on the Same-Origin Policy. A least-privilege
approach, in which a mashup integrator can restrict the
functionality available to each component, can not be im-
plemented using the current integration techniques, without
ownership over the component’s code.

We propose WebJail, a novel client-side security architec-
ture to enable least-privilege integration of components into
a web mashup, based on high-level policies that restrict the
available functionality in each individual component. The
policy language was synthesized from a study and catego-
rization of sensitive operations in the upcoming HTML 5
JavaScript APIs, and full mediation is achieved via the use
of deep aspects in the browser.

We have implemented a prototype of WebJail in Mozilla
Firefox 4.0, and applied it successfully to mainstream plat-
forms such as iGoogle and Facebook. In addition, micro-
benchmarks registered a negligible performance penalty for
page load-time (7ms), and the execution overhead in case of
sensitive operations (0.1ms).

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: Web-based services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC 11 Dec. 5-9, 2011, Orlando, Florida USA

Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

307

Keywords
Web Application Security, Web Mashups, Sandbox, Least-

privilege integration

1. INTRODUCTION

The Internet has seen an explosion of dynamic websites
in the last decade, not in the least because of the power
of JavaScript. With JavaScript, web developers gain the
ability to execute code on the client-side, providing for a
richer and more interactive web experience. The popularity
of JavaScript has increased even more since the advent of
Web 2.0.

Web mashups are a prime example of Web 2.0. In a web
mashup, data and functionality from multiple stakeholders
are combined into a new flexible and lightweight client-side
application. By doing so, a mashup generates added value,
which is one of the most important incentives behind build-
ing mashups. Web mashups depend on collaboration and
interaction between the different mashup components, but
the trustworthiness of the service providers delivering com-
ponents may strongly vary.

The two most wide-spread techniques to integrate third-
party components into a mashup are via script inclusion
and via (sandboxed) iframe integration, as will be discussed
in more detail in Section 2. The script inclusion technique
implies that the third-party component executes with the
same rights as the integrator, whereas the latter technique
restricts the execution of the third-party component accord-
ing to the Same-Origin Policy. More fine-grained techniques
(such as Caja [23] or FBJS [31]) require (some form of) own-
ership over the code to transform or restrict the component
to a known safe subset before delivery to the browser. This
makes these techniques less applicable to integrate third-
party components directly from their service providers.

To enable the necessary collaboration and interaction while
restricting the capabilities of untrusted third-party compo-
nents, web mashups should integrate components according
to the least-privilege principle. This means that each of the
components is only granted access to data or functionality
necessary to perform its core function. Unfortunately, least-
privilege integration of third-party mashup components can
not be achieved with the current script-inclusion and frame-
integration techniques. Moreover, the need for least-privilege
integration becomes highly relevant, especially because of
the augmented capabilities of the upcoming HTML5 Java-
Script APIs [32] (such as access to local storage, geolocation,
media capture and cross-domain communication).

In this paper, we propose WebJail, a novel client-side se-

curity architecture to enable the least-privilege integration
of third-party components in web mashups. The security
restrictions in place are configurable via a high-level com-
position policy under control of the mashup integrator, and
allow the use of legacy mashup components, directly served
by multiple service providers.

In summary, the contributions of this paper are:

1. a novel client-side security architecture, WebJail, that
supports least-privilege composition of legacy third-
party mashup-components

2. the design of a policy language for WebJail that is
tuned to support the effective use of WebJail to limit
access to the powerful upcoming HTML5 APIs

3. the implementation of WebJail and its policy language
in Firefox, and evaluation and discussion of perfor-
mance and usability

The rest of this paper is structured as follows. Section 2
sketches the necessary background, and Section 3 further
elaborates the problem statement. In Section 4, the Web-
Jail least-privilege integration architecture is presented and
its three layers are discussed in more detail. Next, the pro-
totype implementation in Firefox is described in Section 5,
followed by an experimental evaluation in Section 6 and dis-
cussion in Section 7. Finally, Section 8 discusses related
work, and Section 9 summarizes the contributions.

2. BACKGROUND

This section briefly summarizes the Same-Origin Policy.
Next, Section 2.2 discusses how mashups are constructed
and gives some insights in the state-of-practice on how third-
party mashup components get integrated.

2.1 Same-Origin Policy

Currently, mashup security is based on the de facto secu-
rity policy of the web: the Same-Origin Policy (SOP) [34].
An origin is a domain name-protocol-port triple, and the
SOP states that scripts from one origin should not be able
to access content from other origins. This prevents scripts
from stealing data, cookies or login credentials from other
sites. In addition to the SOP, browsers also apply a frame
navigation policy, which restricts the navigation of frames
to its descendants [1].

Among others, the Same-Origin Policy allows a per-origin
separation of JavaScript execution contexts. Contexts are
separated based on the origin of the window’s document,
possibly relaxed via the document . domain property to a right-
hand, fully-qualified fragment of its current hostname. Within
an execution context, the SOP does not impose any addi-
tional security restriction.

2.2 Integration of mashup components

The idea behind a web mashup is to integrate several web
applications (components) and mash up their code, data and
results. The result is a new web application that is more
useful than the sum of its parts. Several publicly available
web applications [25] provide APIs that allow them to be
used as third-party components for web mashups.

To build a client-side mashup, an integrator selects the
relevant in-house and third-party components, and provides

308

the necessary glue code on an integrating web page to re-
trieve the third-party components from their respective ser-
vice providers and let them interact and collaborate with
each other.

As stated before, the two most-widespread techniques to
integrate third-party components into a web mashup are
through script inclusion or via (sandboxed) iframe-integration
[4, 18].

Script inclusion. HTML script tags are used to execute
JavaScript while a webpage is loading. This JavaScript code
can be located on a different server than the webpage it is
executing in. When executing, the browser will treat the
code as if it originated from the same origin as the webpage
itself, without any restrictions of the Same-Origin Policy.

The included code executes in the same JavaScript con-
text, has access to the code of the integrating webpage and
all of its datastructures. All sensitive JavaScript operations
available to the integrating webpage are also available to the
integrated component.

(Sandboxed) iframe integration. HTML iframe tags
allow a web developer to include one document inside an-
other. The integrated document is loaded in its own envi-
ronment almost as if it were loaded in a separate browser
window. The advantage of using an iframe in a mashup
is that the integrated component from another origin is iso-
lated from the integrating webpage via the Same-Origin Pol-
icy. However, the code running inside of the iframe still has
access to all of the same sensitive JavaScript operations as
the integrating webpage, albeit limited to its own execution
context (i.e. origin). For instance, a third-party component
can use local storage APIs, but only has access to the local
storage of its own origin.

HTML 5 adds the “sandbox” attribute to the iframe ele-
ment, allowing an integrator to disable all security-sensitive
features through its “allow-scripts” keyword. Obviously, this
very coarse-grained control has only a very limited applica-
bility in a web mashup context.

3. PROBLEM STATEMENT

In this section, the attacker model is specified, as well as
two typical attack vectors. Next, the increasing impact of in-
secure mashup composition is discussed in the context of the
upcoming set of HTML5 specifications. Finally, the security
assessment is concluded by identifying the requirements for
secure mashup composition, namely the least-privilege inte-
gration of third-party mashup components.

3.1 Attacker model

Our attacker model is inspired by the definition of a gad-
get attacker in Barth et al. [1]. The term gadget in their
definition should, in the context of this paper, be read as
“third-party mashup component”.

We describe the attacker in scope as follows:

Malicious third-party component provider The attacker
is a malicious principal owning one or more machines
on the network. The attacker is able to trick the in-
tegrator in embedding a third-party component under
control of the attacker.

We assume a mashup that consists of multiple third-party
components from several service providers, and an honest
mashup consumer (i.e. end-user). A malicious third-party

component provider attempts to steal sensitive data out-
side its trust boundary (e.g. reading from origin-specific
client-side storage), impersonate other third-party compo-
nents or the integrator (e.g. requesting access to geolo-
cation data on behalf of the integrator) or falsely operate
on behalf of the end-user towards the integrator or other
service providers (e.g. requesting cross-application content
with XMLHttpRequest).

We have identified two possible ways in which an attacker
could present himself as a malicious third-party component
provider: he could offer a malicious third-party component
towards mashup integrators (e.g. via a malicious advertise-
ment, or via a malicious clone of a popular component), or
he could hack into an existing third-party component of a
service provider and abuse the prior existing trust relation-
ship between the integrator and the service provider.

In this paper, we consider the mashup integrator as trusted
by the mashup consumer (i.e. end-user), and an attacker
has no control over the integrator, except for the attacker’s
ability to embed a third-party components of his choice. In
addition, we assume that the attacker has no special network
abilities (such as sniffing the network traffic between client
and servers), browser abilities (e.g. extension under control
of the attacker or client-side malware) and is constrained in
the browser by the Same-Origin Policy.

3.2 Security-sensitive JavaScript operations

The impact of running arbitrary JavaScript code in an in-
secure mashup composition is equivalent to acquiring XSS
capabilities, either in the context of the component’s origin,
or in the context of the integrator. For instance, a ma-
licious third-party component provider can invoke typical
security-sensitive operations such as the retrieval of cookies,
navigation of the browser to another page, launch of exter-
nal requests or access and updates to the Document Object
Model (DOM).

However, with the emerging HTML5 specification and
APIs, the impact of injecting and executing arbitrary Java-
Script has massively increased. Recently, JavaScript APIs
have been proposed to access geolocation information and
system information (such as CPU load and ambient sensors),
to capture audio and video, to store and retrieve data from
a client-side datastore, to communicate between windows as
well as with remote servers.

As a result, executing arbitrary JavaScript becomes much
more attractive to attackers, even if the JavaScript execution
is restricted to the origin of the component, or a unique
origin in case of a sandbox.

3.3 Least-privilege integration

Taking into account the attack vectors present in current
mashup composition, and the increasing impact of such at-
tacks due to newly-added browser features, there is clearly a
need to limit the power of third-party mashup components
under control of the attacker.

Optimally, mashup components should be integrated ac-
cording to the least-privilege principle. This means that
each of the components is only granted access to data or
functionality necessary to perform its core function. This
would enable the necessary collaboration and interaction
while restricting the capabilities of untrusted third-party
components.

Unfortunately, a least-privilege integration of third-party

309

mashup components can not be achieved with the current
script-inclusion and iframe-integration techniques. These
techniques are too coarse-grained: either no restrictions (or
only the Same-Origin Policy) are imposed on the execution
of a third-party component, implicitly inviting abuse, or
JavaScript is fully disabled, preventing any potential abuse
but also fully killing desired functionality.

To make sure that attackers described in Section 3.1 do
not exploit the insecure composition attack vectors and mul-
tiply their impact by using the security sensitive HTML5
APIs described in Section 3.2, the web platform needs a se-
curity architecture that supports least-privilege integration
of web components. Since client-side mashups are composed
in the browser, this architecture must necessarily be imple-
mented in the browser. It should satisfy the following re-
quirements:

R1 Full mediation. The security-sensitive operations need
to be fully mediated. The attacker can not circumvent
the security mechanisms in place.

R2 Remote component delivery. The security mecha-
nism must allow the use of legacy third-party com-
ponents and the direct delivery of components from
the service provider to the browser environment.

R3 Secure composition policy. The secure composition
policy must be configurable (and manageable) by the
mashup integrator. The policy must allow fine-grained
control over a single third-party component, with re-
spect to the security-sensitive operations in the HTML5

APlIs.

R4 Performance The security mechanism should only in-
troduce a minimal performance penalty, unnoticeable
to the end-user.

Existing technologies like e.g. Caja [23] and FBJS [31]
require pre-processing of mashup components, while Con-
Script [21] does not work in a mashup context because it
depends on the mashup component to load and enforce its
own policy. A more thorough discussion of related work can
be found in Section 8.

4. WEBJAIL ARCHITECTURE

To enable least-privilege integration of third-party mashup
components, we propose WeblJail, a novel client-side secu-
rity architecture. WebJail allows a mashup integrator to
apply the least-privilege principle on the individual com-
ponents of the mashup, by letting the integrator express a
secure composition policy and enforce the policy within the
browser by building on top of the deep advice approach of
ConScript [21].

The secure composition policy defines the set of security-
sensitive operations that the component is allowed to invoke.
Each particular operation can be allowed, disallowed, or re-
stricted to a self-defined whitelist. Once loaded, the deep
aspect layer will ensure that the policy is enforced on every
accesspath to the security-sensitive operations, and that the
policy can not be tampered with.

The WebJail architecture consists of three abstraction lay-
ers as shown in Figure 1. The upper layer, the policy layer,
associates the secure composition policy with a mashup com-
ponent, and triggers the underlying layers to enforce the

fé A/:L_\ Policy layer

5 D0O000O0 S oo
(7] Category

g // \ g API

g O}/O\O O Advice construction layer O API Function

e e P

PR

u @ @ @ @ eep aspect weaving layer

Figure 1: The WebJail architecture consists of three layers:
The policy layer, the advice construction layer and the deep
aspect weaving layer.

policy for the given component. The lower layer, the deep
aspect weaving layer, enables the deep aspect support with
the browser’s JavaScript engine. The advice construction
layer in between takes care of mapping the higher-level pol-
icy blocks onto the low-level security-sensitive operations via
a 2-step policy refinement process.

In this section, the three layers of the WebJail will be de-
scribed in more detail. Next, Section 5 will discuss a proto-
type implementation of this architecture in Mozilla Firefox.

4.1 Policy layer

The policy layer associates the secure composition policy
with the respective mashup component. In this section, an
analysis of security-sensitive operations in the HTML5 APIs
is reported and discussed, as well as the secure composition
policy itself.

4.1.1 Security-sensitive JavaScript operations

As part of this research, we have analyzed the emerging
specifications and browser implementations, and have iden-
tified 86 security-sensitive operations, accessible via Java-
Script APIs. We have synthesized the newly-added features
of these specifications in Figure 2, and we will briefly sum-
marize each of the components in the next paragraphs. Most
of these features rely on (some form of) user-consent and/or
have origin-restrictions in place.

Ul & Rendering
(Drag/Drop events, Clipboard
events, Notifications, History API

Sandbox

Inter-Window

i i
Media ! i
(Audio, Video, g Window ' Communication
Media Capture! ! (Cookies, Location) H Web messaging
I '

Device Access 9: | Client-side storage
(System Information, |7} || Event Handlers DOM <« (Web Storage,
Geolocation, Crypto) H H IndexedDB, File API)

L____________/N/ ___________ '
External Communication
(CORS, UMP, XHR 1+2,
WebSockets)

Figure 2: Synthesized model of the emerging HTML5 APIs

Central in the model is the window concept, containing
the document. The window manifest itself as a browser
window, a tab, a popup or a frame, and provides access
to the location and history, event handlers, the document
and its associated DOM tree. Event handlers allow to regis-
ter for a specific event (e.g. being notified of mouse clicks),
and access to the DOM enables a script to read or modify

w N

310

the document’s structure on the fly. Additionally, a sand-
box can impose coarse-grained restrictions on an iframe, as
mentioned in Section 2.2.

Inter-frame communication allows sending messages be-
tween windows (e.g. between mashup components). This in-
cludes window navigation, as well as Web Messaging (postMes-
sage).

Client-side storage enables applications to temporarily or
persistently store data. This can be achieved via Web Stor-
age, IndexedDB or the File API.

External communication features such as CORS, UMP,
XMLHttpRequest level 1 and 2, and websockets allow an
application to communicate with remote websites, even in
cross-origin settings.

Device access allows the web application to retrieve con-
textual data (e.g. geolocation) as well as system information
such as battery level, CPU information and ambient sensors.

Media features enable a web application to play audio and
video fragments, as well as capture audio and video via a
microphone or webcam.

The UI and rendering features allow subscription to clip-
board and drag-and-drop events, issuing desktop notifica-
tions and populating the history via the History API.

For a more thorough analysis of the HTML5 APIs, we
would like to refer to an extensive security analysis we have
carried out, commissioned by the European Network and
Information Security Agency (ENISA) [7].

4.1.2 Secure composition policy

The policy layer associates the secure composition policy
with a mashup component, and deploys the necessary se-
curity controls via the underlying layers. As composition
granularity, we have chosen the iframe level; i.e. mashup
components are each loaded in their separate iframe.

In particular, within WebJail the secure composition pol-
icy is expressed by the mashup integrator, and attached to
a particular component via a newly-introduced policy at-
tribute of the iframe element of the component to be loaded.

<iframe src="http://untrusted.com/compX/”
policy="https://integrator.com/compX. policy”/>

We have grouped the identified security-sensitive opera-
tions in the HTML5 APIs in nine disjoint categories, based
on their functionality: DOM access, Cookies, External com-
munication, Inter-frame communication, Client-side storage,
UI & Rendering, Media, Geolocation and Device access.

For a third-party component, each category can be fully
disabled, fully enabled, or enabled only for a self-defined
whitelist. The whitelists contain category-specific entries.
For example, a whitelist for the category “DOM Access”
contains the ids of the elements that might be read from or
updated in the DOM. The nine security-sensitive categories
are listed in Table 1, together with their underlying APIs,
the amount of security-sensitive functions in each API, and
their WebJail whitelist types.

The secure composition policy expresses the restrictions
for each of the security-sensitive categories, and an example
policy is shown below. Unspecified categories are disallowed
by default, making the last line in the example policy obso-
lete.

{ 7framecomm?” Vyes”
s7,
?extcomm” : [7google.com”, ”youtube.com”],
77device77 ”no” }

Whitelist
ElemReadSet, ElemWriteSet

Categories and APIs (# op.)

DOM Access
DOM Core (17)

Cookies
cookies (2)

External Communication
XHR, CORS, UMP (4)
WebSockets (5)

Server-sent events (2)

Inter-frame Communication
Web Messaging (3)

Client-side Storage
Web Storage (5)

IndexedDB (16)

File API (4)

File API: Dir. and Syst. (11)
File API: Writer (3)

UI and Rendering
History API (4)

Drag/Drop events (3)

Media
Media Capture API (3)

Geolocation
Geolocation API (2)

Device Access
System Information API (2)

Total number of security-sensitive operations: 86

KeyReadSet, KeyWriteSet

DestinationDomainSet

DestinationDomainSet

KeyReadSet, KeyWriteSet

SensorReadSet

Table 1: Overview of the sensitive JavaScript operations
from the HTML 5 APIs, divided in categories.

It is important to note that WebJails or regular frames can
be used inside WebJails. In such a case, the functionality
in the inner frame is determined by the policies imposed
on enclosing frames, in addition to its own policy (if it has
one, as is the case with a WebJail frame). Allowing sensible
cascading of policies implies that “deeper” policies can only
make the total policy more strict. If this were not the case,
a WeblJail with a less strict policy could be used to “break
out” of the WebJail restrictions.

The semantics of a policy entry for a specific category can
be thought of as a set. Let V be the set of all possible values
that can be listed in a whitelist. The “allow all” policy would
then be represented by the set V itself, a whitelist would be
represented by a subset w C V and the “allow none” policy
by the empty set ¢. The relationship “x is at least as strict
as y” can be represented as z C y. Using this notation, the
combined policy p of 2 policies a and b is the intersection
p=aNnb,since pCaandpCb

After loading, parsing and combining all the policies appli-
cable to the WebJail protected iframe, the policy is enforced
via the underlying layers.

4.2 Advice construction layer

The task of the advice construction layer is to build advice
functions based on the high-level policy received from the
policy layer, and apply these advice functions on the low-
level security-sensitive operations via deep aspect technology
in the deep advice weaving layer.

To do so, the advice construction layer applies a 2-step
refinement process. For each category of the secure compo-
sition policy, the set of relevant APIs is selected. Next for
each API, the individual security-sensitive operations are
processed. Consider for instance that a whitelist of type
“KeyReadSet”" is specified for the client-side storage in the
composition policy. This is first mapped to the various stor-
age APIs in place (such as Web Storage and File API), and

'Such a whitelist contains a set of keys that may be read

311

then advice is constructed for the security-sensitive opera-
tions in the API (e.g. for accessing the localStorage object).

The advice function decides, based on the policy, whether
or not the associated API function will be called: if the
policy for the API function is “allow all”, or “allow some”
and the whitelist matches, then the advice function allows
the call. Otherwise, the call is blocked.

On successful completion of its job, the advice construc-
tion layer has advice functions for all the security-sensitive
operations across the nine categories relevant for the spe-
cific policy. Next, the advices are applied on the original
operations via the deep advice weaving layer.

4.3 Deep aspect weaving layer

The (advice, operation) pairs received from the advice con-
struction layer are registered into the JavaScript engine as
deep advice. The result of this weaving is that the origi-
nal API function is replaced with the advice function, and
that all accesspaths to the API function now go through
the advice function. The advice function itself is the only
place where a reference to the original API function exists,
allowing it to make use of the original functionality when
desired.

5. PROTOTYPE IMPLEMENTATION

To show the feasibility and test the effectiveness of Web-
Jail, we implemented a prototype by modifying Mozilla Fire-
fox 4.0b10pre.The modifications to the Mozilla code are lo-
calized and consist of £800 lines of new code (£300 Java-
Script, £500 C++), spread over 3 main files. The prototype
currently supports the security-sensitive categories external
and inter-frame communication, client-side storage, Ul and
rendering (except for drag/drop events) and geolocation.

Each of the three layers of the implementation will be
discussed now in more detail.

5.1 Policy layer

The processing of the secure composition policy via the
policy attribute happens in the frame loader, which handles
construction of and loading content into frames. The speci-
fied policy URL is registered as the policy URL for the frame
to be loaded, and any content loaded into this frame will be
subject to that WebJail policy, even if that content issues a
refresh, submits a form or navigates to another URL.

When an iframe is enclosed in another iframe, and both
specify a policy, the combinatory rules defined in Section 4
are applied on a per-category basis. To ease up parsing of
a policy file, we have chosen to use the JavaScript Object
Notation (JSON).

Once the combined policy for each category has been cal-
culated, the list of APIs in that category is passed to the
advice construction layer, along with the combined policy.

5.2 Advice construction layer

The advice construction layer builds advice functions for
individual API functions. For each API, the advice construc-
tion layer knows what functions are essential to enforce the
policy and builds a specific advice function that enforces it.

The advice function is a function that will be called in-
stead of the real function. It will determine whether or not
the real function will be called based on the policy and the
arguments passed in the function call. Advice functions in
WeblJail are written in JavaScript and should expect 3 ar-

OO0~ Ui WN =

guments: a function object that can be used to access the
original function, the object on which the function was in-
voked (i.e. the this object) and a list with the arguments
passed to the function.

function makeAdvice(whitelist) {
var myWhitelist = whitelist;

return function (origf, obj, vp) {
if (myWhitelist . ROmdexOf(vp[O])> 0) {

return origf.ROapply(obj, vp);
} else {
return false;
}
b
}
myAdvice = makeAdvice ([foo’, ’bar’]);
registerAdvice (myFunction, myAdvice);

disableAdviceRegistration ();

Figure 3: Example advice function construction and weaving

The construction of a rather generic example advice func-
tion is shown in Figure 3. The listing shows a function
makeAdvice, which returns an advice function as a closure
containing the whitelist. Whenever the advice function is
called for a function to which the first argument (vp[0]) is
either ‘foo’ or ‘bar’, then the original function is executed.
Otherwise, the advice function returns false.

Note that in the example, ROindex0f and ROapply are
used. These functions were introduced to prevent prototype
poisoning attacks against the WebJail infrastructure. They
provide the same functionality as index0f and apply, except
that they have the JSPROP_READONLY and JSPROP_PERMANENT
attributes set so they can not be modified or deleted.

Next, each (advice, operation) pair is passed on to the deep
aspect weaving layer to achieve the deep aspect weaving.

5.3 Deep aspect weaving layer

The deep aspect weaving layer makes sure that all code-
paths to an advised function pass through its advice func-
tion. Although the code from WeblJail is the first code to
run in a WebJail iframe, we consider the scenario that there
can be code or objects in place that already reference the
function to be advised. It is necessary to maintain the ex-
isting references to a function, if they exist, so that advice
weaving does not break code unintentionally.

The implementation of the deep aspect weaving layer is
inspired by ConScript. To register deep advice, we intro-
duce a new function called registerAdvice, which takes 2
arguments: the function to advise (also referred to as the
‘original’ function) and its advice function. Line 14 of Fig-
ure 3 illustrates the usage of the registerAdvice function.

In Spidermonkey, Mozilla’s JavaScript engine, all Java-
Script functions are represented by JSFunction objects. A
JSFunction object can represent both a native function, as
well as a JIT compiled JavaScript function. Because Web-
Jail enforces policies on JavaScript APIs and all of these are
implemented with native functions, our implementation only
considers JSFunction objects which point to native code?.

The process of registering advice for a function is schemat-
ically illustrated in Figure 4. Consider a native function

2 Although WebJail could be implemented for non-native
functions as well.

312

Func and its advice function Adv. Before deep aspect weav-
ing, the JSFunction object of Func contains a reference to

a native C++ function OrigCode.
JSFunction
Func

JSFunction

Func

JSFunction

Adv

JSFunction

Adv
=l

o O

OrigCode Trampoline
(a) Before weaving

OrigCode
(b) After weaving

Trampoline

Figure 4: Schematic view of deep aspect weaving.

At weaving time, the value of the function pointer in Func
(which points to OrigCode) and a reference to Adv are backed
up inside the Func object. The function pointer inside Func
is then directed towards the Trampoline function, which is
an internal native C++ function provided by WeblJail.

At function invocation time, the Trampoline function will
be called as if it were the original function (0OrigCode). This
function can retrieve the values backed up in the weaving
phase. From the backed up function pointer pointing to
OrigCode, a new anonymous JSFunction object is created.
This anonymous function, together with the current this
object and the arguments to the Trampoline function are
passed to the advice function Adv. Finally, the result from
the advice function is returned to the calling code.

In reality, the registerAdvice function is slightly more
complicated. In each JSFunction object, SpiderMonkey al-
locates 2 private values, known as “reserved slots”, which
can be used by Firefox to store opaque data. As shown in
Figure 4, the reserved slots of Func (hatched diagonally) are
backed up in the weaving phase together with the other val-
ues. During invocation time, these reserved slots are then
restored into the anonymous function mentioned earlier.

Note that all code that referenced Func still works, al-
though calls to this function will now pass through the ad-
vice function Adv first. Also note that no reference to the
original code OrigCode is available. The only way to call
this code is by making use of the advice function.

To prevent any other JavaScript code from having access
to the registerAdvice function, it is disabled after all ad-
vice from the policy has been applied. For this purpose,
WebJail provides the disableAdviceRegistration function,
which disables the use of the registerAdvice function in the
current JavaScript context.

6. EVALUATION

6.1 Performance

We performed micro-benchmarks on WebJail to evalu-
ate its performance overhead with regard to page load-time
and function execution. The prototype implementation is
built on Mozilla Firefox 4.0b10pre, and compiled with the
GNU CH++ compiler v4.4.4-14ubuntu5. The benchmarks
were performed on an Apple MacBook Pro 4.1, with an In-
tel Core 2 Duo T8300 CPU running at 2.40GHz and 4GB
of memory, running Ubuntu 10.10 with Linux kernel version
2.6.35-28-generic.

6.1.1 Page load-time overhead

To measure the page load-time overhead, we created a
local webpage (main.html) that embeds another local page
(inner.html) in an iframe with and without a local policy

file. inner.html records a timestamp (new Date() .getTime()))

when the page starts and stops loading (using the body on-
load event). WebJail was modified to record the starttime
before anything else executes, so that policy retrieval, load-
ing and application is taken into account. After the results
are submitted, main.html reloads.

We averaged the results of 1000 page reloads. Without
WeblJail, the average load-time was 16.22ms (o = 3.74ms).
With WeblJail, the average is 23.11ms (o = 2.76ms).

6.1.2 Function execution overhead

Similarly, we used 2 local pages (main.html and inner.html)

to measure function execution overhead. inner.html mea-
sures how long it takes for 10000 iterations of a piece of
code to execute. We measured 2 scenarios: a typical XML-
HttpRequest invocation (constructor, open and send func-
tions) and a localStorage set and get (setItem and getItem).
Besides measuring a baseline without WebJail policy, we
measured each scenario when restricted by 3 different poli-
cies: “allow all”, “allow none” and a whitelist with 5 values.
The averages are summarized in Table 2.

| XMLHttpRequest | localStorage

Baseline 1.25 ms 0.37 ms

“Allow all” 1.25 ms (+ 0%) 0.37 ms (+ 0%)
“Allow none” | 0.07 ms (- 94.4%) | 0.04 ms (- 89.2 %)
Whitelist 1.33 ms (+ 6.4%) | 0.47 ms (+ 27%)

Table 2: Function execution overhead

To conclude, we have registered a negligible performance
penalty for our WebJail prototype: a page load-time of 7ms,
and an execution overhead in case of sensitive operations
about 0.1ms.

6.2 Security

As discussed in Subsection 5.3, the registerAdvice func-
tion disconnects an available function and makes it available
only to the advice function. Because of the use of deep as-
pects, we can ensure that no other references to the original
function are available in the JavaScript environment, even if
such references already existed before registerAdvice was
called. We have successfully verified this full mediation of
the deep aspects using our prototype implementation.

Because advice functions are written in JavaScript and the
advice function has the only reference to the original func-
tion, it would be tempting for an attacker to attack the Web-
Jail infrastructure. The retrieval and application of a Web-
Jail policy happens before any other code is executed in the
JavaScript context. In addition, the registerAdvice func-
tion is disabled once the policy has been applied. The only
remaining attack surface is the advice function during its
execution. The advice functions constructed by the advice
construction layer are functionally equivalent to the exam-
ple advice function created in Figure 3. We know of 3 attack
vectors: prototype poisoning of Array.prototype.index0f
and Function.prototype.apply, and toString redefinition
on vp[0] (the first argument to the example advice function
in Figure 3). By introducing the readonly copies ROindex0f
and ROapply (See Subsection 5.2), we prevent an attacker

313

from exploiting the first 2 attack vectors. The third vector,
toString redefinition, was verified in our prototype imple-
mentation and is not an issue because toString is never
called on the argument vp[0].

6.3 Applicability

To test the applicability of the WebJail architecture, we
have applied our prototype implementation to mainstream
mashup platforms, including iGoogle and Facebook. As part
of the setup, we have instrumented responses from these
platforms to include secure composition policies, by auto-
matically injecting a policy attribute in selected iframes.
Next, we have applied both permissive composition poli-
cies as well as restricted composition policies and verified
that security-sensitive operations for the third-party compo-
nents were executed as usual in the first case, and blocked
in the latter case. For instance, as part of the applicability
tests, we applied WebJail to control Geolocation function-
ality in the Google Latitude[11] component integrated into
iGoogle, as well as external communication functionality of
the third-party Facebook application “T'weets To Pages”[14]
integrated into our Facebook page.

7. DISCUSSION AND FUTURE WORK

In the previous sections, we have showed the feasibility
of the WebJail architecture via a prototype implementation
in Firefox, and evaluated the performance, security and ap-
plicability. By applying micro-benchmarks, we measured a
negligible overhead, we discussed how the WebJail architec-
ture achieves full mediation via deep aspect weaving, and we
briefly illustrated the applicability of WebJail in mainstream
mashup platforms.

In this section, we will discuss some points of attention
in realizing least-privilege integration in web mashups and
some opportunities for further improvements.

First, the granularity chosen for the secure composition
policies for WeblJail is primarily driven by the ease of con-
figuration for the mashup integrator. We strongly believe
that the category level of granularity increases the adoption
potential by integrators and browsers, for instance compared
to semantically rich and expressive security policies as is cur-
rently the case in wrapper approaches or ConScript. In fact,
we chose to introduce this policy abstraction to let the in-
tegrator focus on the “what” rather than the “how”. A next
step could be to define policy templates per mashup compo-
nent type (e.g. advertisement and geotagging components).

Nevertheless, more fine-grained policies could also be ap-
plied to achieve least-privilege integration, but one should
be aware of the potential risk of creating an inverse sand-
box. The goal of a least-privilege integration architecture,
such as WeblJail, is to limit the functionality available to a
(possibly) malicious component. In case the policy language
is too expressive, an attacker could use this technology to
achieve the inverse. An attacker could integrate a legitimate
component into his website and impose a malicious policy
on it. The result is effectively a hardcoded XSS attack in
the browser. For instance, the attacker could introduce an
advice that leaks all sensitive information out of a legitimate
component as part of its least-privilege composition policy
without being stopped by the Same-Origin Policy.

One particular area where we see opportunities for more
fine-grained enforcement are cross-domain interactions. On-
going research on Cross-Site Request Forgery (CSRF) [5,

6, 28, 20| already differentiates between benign and poten-
tially malicious cross-domain requests, and restricts the lat-
ter class as part of a browser extension. This line of research
could be seen as complementary to the presented approach,
and a combination of both would allow a more fine-grained
enforcement for cross-domain interactions.

Second, a possible technique to escape a modified Java-
Script execution context in an iframe, would be to open
a new window and execute JavaScript in there. We have
anticipated this attack by hardcoding policies for e.g. the
window.open function. This is however not the best ap-
proach. The upcoming HTML 5 specs include the sand-
box attribute for iframes. This specification states that a
sandbox should prevent content from creating new auxil-
iary browsing contexts. Mozilla Firefox does not support
the sandbox attribute yet. The hardcoded policy for win-
dow.open is a quick fix while we are working on our own full
implementation of the sandbox attribute in Mozilla Firefox.

Another way to escape WeblJail is to access the window
object of the parent or a sibling frame and make use of
the functions in that JavaScript context (e.g. parent.nav-
igator.geolocation.getCurrentPosition). In such a sce-
nario, accessing another JavaScript context falls under the
Same-Origin Policy and will only be possible if both the
caller and callee are in the same origin. To avoid this at-
tack, the WebJail implementation must restrict access to
sensitive operations in other execution contexts under the
Same-Origin Policy.

Thirdly, the categories in the policy files of WeblJail are
a result of a study of the sensitive JavaScript operations in
the new HTML5 APIs. Most of the HTML5 APIs are work-
ing drafts and might change in the future. The category list
in WeblJail is therefore an up-to-date snapshot, but might
be subject to change in the future. Even after the specifi-
cations for HTML5 are officially released, the functionality
in browsers might keep changing. To cope with this evolv-
ing landscape, WebJail can easily be extended to support
additional categories and APIs as well.

Finally, the WebJail architecture is tailored to support

least-privilege integration in mashups that are built via iframe-

integration. An interesting future track is to investigate how
to enable browsers to support least-privilege script-inclusion
integration as well. Since in such a scenario, one can not
build on the fact that a separate execution context is cre-
ated, we expect this to be a challenging trajectory.

8. RELATED WORK

There is a broad set of related work that focuses on the
integration of untrusted JavaScript code in web applications.

JavaScript subsets.

A common technique to prevent undesired behavior is to
restrict the untrusted code (i.e. the third-party component)
to a safe subset of JavaScript. The allowed operations within
the subset prevent the untrusted code from obtaining ele-
vated privileges, unless explicitly allowed by the integrator.

ADSafe[3] and FBJS[31] requires third-party components
to be written in a JavaScript subset that is known to be
safe. The ADSafe subset removes several unsafe features
from JavaScript (e.g. global variables, eval, ...) and pro-
vides safe alternatives through the ADSAFE object. Caja[23],
Jacaranda[15] and Live Labs’ Websandbox[22] take a differ-
ent approach. Instead of heavily restricting the developer’s

314

language, they transform the JavaScript code into a safe
version. The transformation process is based on both static
analysis and rewriting to integrate runtime checks.

These techniques effectively support client-side least-privilege

integration of mashup components. The main disadvan-
tage is the tight coupling of the security features with the
third-party component code. This requires control over the
code, either at development or deployment time, which con-
flicts with legacy components and remote component deliv-
ery (R2), and reduces the applicability to mashup scenarios
where the integrator delivers the components to the browser.

JavaScript instrumentation and access mediation.

Instead of restricting a third-party component to a Java-
Script subset, access to specific security-sensitive operations
can be mediated. Mediation can consist of blocking the call,
or letting a policy decide whether or not to allow it.

BrowserShield[26] is a server-side rewriting technique, that
rewrites certain JavaScript functions to use safe equivalents.
These safe equivalents are implemented in the “bshield” ob-
ject that is introduced through the BrowserShield JavaScript
libraries that are injected into each page. BrowserShield
makes use of a proxy to inject its code into a webpage.

Self-protecting JavaScript[24, 19] is a client-side wrapping
technique that applies advice around JavaScript functions,
without requiring any browser modifications. The wrapping
code and advice are provided by the server and are exe-
cuted first, ensuring a clean environment to start from. The
advice is non-deep advice, meaning that by protecting one
operation, different access paths to the same operation are
not automatically protected. The main challenge of this ap-
proach is to ensure full mediation (R1) without breaking
the component’s legitimate functionality (e.g. via removal
of prototypes), since both policy and third-party component
code live in the same JavaScript context.

Browser-Enforced Embedded Policies (BEEP)[16] injects
a policy script at the server-side. The browser will call this
policy script before loading another script, giving the pol-
icy the opportunity to vet the script about to be loaded.
The loading process will only continue after the approval of
the policy. This approach offers control over which scripts
are loaded, but is too coarse grained to assign privileges to
specific components.

ConScript[21] allows the enforcement of fine-grained secu-
rity policies for JavaScript in the browser. The approach is
similar to self-protecting JavaScript, except that ConScript
uses deep advice, thus protects all access paths to a function.
The price for using deep advice is the need for client-side
support in the JavaScript engine. A limitation of ConScript
is that policies are not composition policies: the policies
are provided by and applied to the same webpage, which
conflicts with remote component delivery (R2) and secure
composition policy configurable by the integrator (R3).

In contrast to the techniques described above, WebJail
offers the integrator the possibility to define a policy that
restricts the behavior of a third-party component in an iso-
lated way. Additionally, all of the techniques above use Java-
Script as a policy language. This amount of freedom compli-
cates the writing of secure policies: protection against all the
emerging HTML5 APIs is fully up to policy writer and can
be error-prone, a problem that the WebJail policy language
is not susceptible to.

Web application code and data analysis.

A common protection technique against XSS vulnerabil-
ities or attacks is server-side code or data analysis. Even
though these techniques can only be used to check if a com-
ponent matches certain security requirements and do not
enforce a policy, we still discuss them here, since they are
a server-side way to ensure that a component meets certain
least-privilege integration requirements out-of-the-bozx.

Gatekeeper[12] is a mostly static [sic] enforcement mech-
anism designed to defend against possibly malicious Java-
Script widgets on a hosting page. Gatekeeper analyzes the
complete JavaScript code together with the hosting page.
In addition, Gatekeeper uses runtime enforcement to disable
dynamic JavaScript features.

XSS-Guard[2] aims to detect and remove scripts that are
not intended to be present in a web application’s output,
thus effectively mitigating XSS attacks. XSS-Guard dynam-
ically learns what set of scripts is used for an HTTP request.
Using this knowledge, subsequent requests can be protected.

Recently, Mozilla proposed the Content Security Policy
(CSP) [29], which allows the integrator to insert a security
policy via response headers or meta tags. Unfortunately,
CSP only supports restrictions on a subset of the security-
sensitive operations discussed in this paper, namely oper-
ations potentially leading to content injection (e.g. script
inclusion and XHR).

Information flow control.

Information flow control techniques can be used to detect
unauthorized information sharing or leaking between origins
or external parties. This is extremely useful for applications
that are allowed to use sensitive data, such as a location,
but are not allowed to share that data.

Both Magazinius et al.[18] and Li et al.[17] have proposed
an information flow control technique that prevents unau-
thorized sharing of data. Additionally, both techniques sup-
port authorized sharing by means of declassification, where
a certain piece of data is no longer considered sensitive.

Secure multi-execution[9] detects information leakage by
simultaneously running the code for each security level. This
approach is a robust way to detect information leakage, but
does not support declassification.

Information flow control techniques themselves are not
suited for enforcing least-privilege integration. Likewise,
WebJail is not suited to enforce information flow control,
since it would be difficult to cover all possible leaks. Both
techniques are complementary and can be used together to
ensure least-privilege integration without unauthorized in-
formation leaking.

Isolating content using specialized HTML.

Another approach to least-privilege integration is the iso-
lation of untrusted content. By explicitly separating the
untrusted code, it becomes easier to restrict its behavior,
for example by preventing script execution.

The “untrusted” attribute[10] on a div element aims to
allow the browser to make the difference between trusted
and untrusted code. The idea is to enclose any untrusted
content with such a div construct. This technique fails to
defend against injecting closing tags, which would trivially
circumvent the countermeasure.

The new “sandbox” attribute of the iframe element in
HTML 5[13] provides a safer alternative, but is very coarse-

315

grained. It only supports limited restrictions, and as far
as JavaScript APIs are concerned, it only supports to com-
pletely enable or disable JavaScript.

ADJail[30] is geared towards securely isolating ads from a
hosting page for confidentiality and integrity purposes, while
maintaining usability. The ad is loaded on a shadow page
that contains only those elements of the hosting page that
the web developer wishes the ad to have access to. Changes
to the shadow page are replicated to the hosting page if
those changes conform to the specified policy. Likewise, user
actions on the hosting page are mimicked to the shadow page
if allowed by the policy. ADJail limits DOM access and Ul
interaction with the component, but does not restrict the
use of all other sensitive operations like WebJail can.

User-provided policies.

Morzilla offers Configurable Security Policies[27], a user-
configurable policy that is part of the browser. The policy
allows the user to explicitly enable or disable certain capa-
bilities for specific internet sites. An example is the option
to disallow a certain site to open a popup window. Some
parts of this idea have also been implemented in the Secu-
rity zones of Internet Explorer.

The policies and enforcement mechanism offered by this
technique resemble WebJail. The major difference is that
these policies are user-configurable, and thus not under con-
trol of the integrator. Additionally, the policies do not sup-
port a different set of rules for the same included content,
in two different scenarios, whereas WebJail does.

9. CONCLUSION

In this paper we have presented WebJail, a novel client-
side security architecture to enables least-privilege integra-
tion of third-party components in web mashups. The Web-
Jail security architecture is compatible with legacy mashup
components, and allows the direct delivery of components
from the service providers to the browser.

We have designed a secure composition language for Web-
Jail, based on a study of security-sensitive operations in
HTML5 APIs, and achieved full mediation by applying deep
aspect weaving within the browser.

We have implemented a prototype of WebJail in Mozilla
Firefox 4.0, and applied it successfully to mainstream plat-
forms such as iGoogle and Facebook. In addition, we have
evaluated the performance of the WebJail implementation
using micro-benchmarks, showing that both the page load-
time overhead (+7ms) and the execution overhead of a func-
tion advised with a whitelist policy (+0.1ms) are negligible.

10. ACKNOWLEDGMENTS

This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science
Policy, IBBT, IWT, the Research Fund K.U.Leuven and the
EU-funded FP7-projects WebSand and NESSoS.

The authors would also like to thank Maarten Decat and
Willem De Groef for their contribution to early proof-of-
concept implementations [8, 33] to test the feasibility of the
presented research.

11. REFERENCES

[1] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. Commun. ACM,

[7]

[11]

[12]

[17]

52:83-91, June 2009.

P. Bisht and V. Venkatakrishnan. Xss-guard: Precise
dynamic prevention of cross-site scripting attacks. In
5th GI International Conference on Detection of
Intrusions & Malware, and Vulnerability Assesment,
July 2008.

D. Crockford. ADsafe — making JavaScript safe for
advertising. http://adsafe.org/.

P. De Ryck, M. Decat, L. Desmet, F. Piessens, and
W. Joosen. Security of web mashups: a survey. In 15th
Nordic Conference in Secure IT Systems (NordSec
2010). Springer, 2011.

P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and
W. Joosen. Csfire: Transparent client-side mitigation
of malicious cross-domain requests. In Lecture Notes
in Computer Science, volume 5965, pages 18-34.
Springer Berlin / Heidelberg, February 2010.

P. De Ryck, L. Desmet, W. Joosen, and F. Piessens.
Automatic and precise client-side protection against
csrf attacks. In V. Atluri and C. Diaz, editors,
Computer Security - ESORICS 2011, volume 6879 of
Lecture Notes in Computer Science, pages 100-116.
Springer Berlin / Heidelberg, 2011.

P. De Ryck, L. Desmet, P. Philippaerts, and

F. Piessens. A security analysis of next generation web
standards. Technical report, G. Hogben and M.
Dekker (Eds.), European Network and Information
Security Agency (ENISA), July 2011.

M. Decat. Ondersteuning voor veilige Web Mashups.
Master’s thesis, Katholieke Universiteit Leuven, 2010.
D. Devriese and F. Piessens. Noninterference through
Secure Multi-execution. 2010 IEEE Symposium on
Security and Privacy, pages 109-124, 2010.

A. Felt, P. Hooimeijer, D. Evans, and W. Weimer.
Talking to strangers without taking their candy:
isolating proxied content. In SocialNets *08:
Proceedings of the 1st Workshop on Social Network
Systems, pages 25-30, New York, NY, USA, 2008.
ACM.

Google. Google Latitude.
https://www.google.com/latitude/.

S. Guarnieri and B. Livshits. Gatekeeper: Mostly
static enforcement of security and reliability policies
for javascript code. In Proceedings of the Usenix
Security Symposium, Aug. 2009.

I. Hickson and D. Hyatt. HTML 5 Working Draft -
The sandbox Attribute.
http://www.w3.org/TR/html5/the-iframe-element.
html#attr-iframe-sandbox, June 2010.

Involver. Tweets To Pages.
http://www.facebook.com/TweetsApp.

Jacaranda. Jacaranda. http://jacaranda.org.

T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-Enforced Embedded
Policies. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
601-610, New York, NY, USA, 2007. ACM.

Z. Li, K. Zhang, and X. Wang. Mash-if: Practical
information-flow control within client-side mashups. In
Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference on, pages 251

316

[18]

[19]

[20]

[21]

[22

[23]

[24]

[25]

[26]

[27]

[28

[29]

[31]
32]

33

[34]

—260, 28 2010-july 1 2010.

J. Magazinius, A. Askarov, and A. Sabelfeld. A
lattice-based approach to mashup security. In
Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security,
ASTACCS ’10, pages 15-23, New York, NY, USA,
2010. ACM.

J. Magazinius, P. Phung, and D. Sands. Safe wrappers
and sane policies for self protecting javascript. In The
15th Nordic Conf. in Secure IT Systems. Springer
Verlag, 2010.

G. Maone. Noscript 2.0.9.9. http://noscript.net/,
2011.

L. Meyerovich and B. Livshits. ConScript: Specifying
and enforcing fine-grained security policies for
Javascript in the browser. In IEEE Symposium on
Security and Privacy, May 2010.

Microsoft Live Labs. Live Labs Websandbox.
http://websandbox.org.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and

M. Stay. Caja - safe active content in sanitized
JavaScript. Technical report, Google Inc., June 2008.
P. H. Phung, D. Sands, and A. Chudnov. Lightweight
self-protecting javascript. In Proceedings of the 4th
International Symposium on Information, Computer,
and Communications Security, ASTACCS ’09, pages
47-60, New York, NY, USA, 2009. ACM.
Programmable Web. Keeping you up to date with
APIs, mashups and the Web as platform.
http://www.programmableweb.com/.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: vulnerability-driven
filtering of dynamic HTML. In OSDI °06: Proceedings
of the Tth symposium on Operating systems design and
implementation, pages 61-74, Berkeley, CA, USA,
2006. USENIX Association.

J. Ruderman. Configurable Security Policies.
http://www.mozilla.org/projects/security/
components/ConfigPolicy.html.

J. Samuel. Requestpolicy 0.5.20.
http://www.requestpolicy.com, 2011.

S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In Proceedings of the
19th international conference on World wide web,
WWW 10, pages 921-930, New York, NY, USA,
2010. ACM.

M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan.
Adjail: Practical enforcement of confidentiality and
integrity policies on web advertisements. In 19th
USENIX Security Symposium, Aug. 2010.

The FaceBook Team. FBJS. http:
//wiki.developers.facebook.com/index.php/FBJS.
W3C. W3C Standards and drafts - Javascript APIs.
http://www.w3.org/TR/#tr_Javascript_APIs.
Willem De Groef. ConScript For Firefox.
http://cqrit.be/conscript/.

M. Zalewski. Browser security handbook.
http://code.google.com/p/browsersec/wiki/Main,
2010.

