Password Meters and Generators on the Web:
From Large-Scale Empirical Study to Getting It Right

Steven Van Acker
iMinds-DistriNet, KU Leuven,
3001 Leuven, Belgium

ABSTRACT

Web services heavily rely on passwords for user authentica-
tion. To help users chose stronger passwords, password meter
and password generator facilities are becoming increasingly
popular. Password meters estimate the strength of passwords
provided by users. Password generators help users with gen-
erating stronger passwords.

This paper turns the spotlight on the state of the art of
password meters and generators on the web. Orthogonal to
the large body of work on password metrics, we focus on get-
ting password meters and generators right in the web setting.
We report on the state of affairs via a large-scale empirical
study of web password meters and generators. Our findings
reveal pervasive trust to third-party code to have access to
the passwords. We uncover three cases when this trust is
abused to leak the passwords to third parties. Furthermore,
we discover that often the passwords are sent out to the net-
work, invisibly to users, and sometimes in clear. To improve
the state of the art, we propose SandPass, a general web
framework that allows secure and modular porting of pass-
word meter and generation modules. We demonstrate the
usefulness of the framework by a reference implementation
and a case study with a password meter by the Swedish Post
and Telecommunication Agency.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Unauthorized access

Keywords

web security; passwords; sandboxing

1. INTRODUCTION

The use of passwords is ubiquitous on the Internet. Al-
though a variety of authentication mechanisms have been
proposed [6], password-based authentication, i.e. matching
the combination of username and password against creden-
tials stored on the server, is still a widespread way of authen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’15, March 24, 2015, San Antonio, Texas, USA.

Copyright © 2015 ACM 978-1-4503-3191-3/15/03 ...$15.00.
http://dx.doi.org/10.1145/2699026.2699118.

Daniel Hausknecht
Chalmers University of
Technology, Sweden

Andrei Sabelfeld
Chalmers University of
Technology, Sweden

ticating on the Internet. Databases with user credentials are
often leaked after a website has been compromised [59]. Pass-
word storage best practices [40] prescribe organizations to
store the passwords hashed with a cryptographically strong
one-way hashing algorithm and a credential-specific salt.

Password cracking. Motivated attackers will nevertheless
try to reverse the stored hashes into plaintext password by
cracking the hashes with special tools such as John The Rip-
per [38]. To crack a password hash, password crackers gener-
ate hashes of candidate passwords and compare them to the
original hash. If a match is found, the original password was
recovered or at least a password that results in the same hash
value.

For short enough passwords, it is possible to enumerate
passwords of a given length and store all the hashes in a
database. This database, known as a rainbow table |37|, can
be used to speedup the cracking of hashes of short-length
passwords. To avoid this, passwords can be combined with a
salt |34] before hashing. Adding a salt to a hash makes rain-
bow tables less practical because they would have to contain
all the hashes of passwords combined with all salts.

With the knowledge that users often select passwords that
are based on dictionary words 25|, a good strategy for a pass-
word cracker is then to use a dictionary of words as the basis
for input for the cracker. This practice is known as a dic-
tionary attack |34] and is used by the popular CrackLib [10]
library to verify the strength of passwords entered by users.
Password hashes can often be cracked despite newest hashing
algorithms, although it may require a significant amount of
time and resources if the plaintext password is well chosen [§].

Password meters and generators. 1t is thus of vital impor-
tance that users pick “strong” passwords, i.e, passwords that
are not easily guessable or crackable by cracking tools. How-
ever, picking a sufficiently strong password is a difficult task
for a typical user [65]. To help users with this task, tools have
emerged that both evaluate the strength of user-chosen pass-
words and generate strong passwords using heuristics. These
tools are called password meters and password generators, re-
spectively.

Although password meters and password generators can
help to select stronger passwords [56], they bring a new breed
of security problems if designed or implemented carelessly.
In the web setting, they are an immediate subject to all the
ailments of web applications.

Passwords meters and generators on the web. This pa-
per turns the spotlight on the state of the art of password
meters and generators on the web. Orthogonal to the large

body of work on password metrics |8, 7], |44} |64} 23], we focus
on getting password meters and generators right in the web
setting.

Browser extensions, as BadPass [5], to indicate password
strength, avoid some security problems by running separately
from the code on web pages, but they have the obvious in-
convenience of requiring users to install an extension. The
abundance of web pages with password meters and genera-
tors (analyzed in Section speaks for the popularity of these
services in the form of web services, which justifies our focus.

Threat model. First, we are interested in the passive net-
work attacker |20] that sniffs the traffic on the network. This
attacker might be able to get hold of passwords that are trans-
mitted on the network in clear. Second, we are interested
in the web attacker [2] that controls certain web sites. Of
particular concern are third-party web attackers that might
harvest passwords when a script from the attacker-controlled
web site is included in a password meter or generator ser-
vice. Also of concern are second-party web attackers that are
in control of stand-alone password meter and generator ser-
vices. It is undesirable to pass the actual passwords to such
services. Although a password meter might not have the
associated username, current fingerprinting techniques facil-
itate uniquely tracking browsers, allowing the identification
of users |14]. A number of techniques such as autocomplete
features open up for programmatically determining the user-
names.

State of the art. The first part of our work is an analysis of
the state of the art of password meters and generators on the
web. We report on the state of affairs via an empirical study
of password meters and generators reachable from the Bing
search engine and top Alexa pages.

Unfortunately, the state of the art leaves much to be de-
sired. Most strikingly, we find that the majority of password
meters and generators lend their trust to third-party scripts.
The current practice suffers from abusing the privileges of
the script inclusion mechanism [36]. A recent real-life exam-
ple is the defacement of the Reuters site in June 2014 [49],
attributed to “Syrian Electronic Army”, which compromised
a third-party widget (Taboola |52]). This shows that even es-
tablished content delivery networks risk being compromised,
and these risks immediately extend to all web sites that in-
clude scripts from such networks.

77.9% of standalone password meters, 76.8% of standalone
password generators, and 96.5% of password meters on ser-
vice signup pages include third-party code (which runs with
the same privileges as the main code). Figure [1] depicts the
danger with trusting third-party code. A script from a third
party has both access to the password and access to network
communication to freely leak the password. Our findings (de-
tailed in Section include three websites that send passwords
to such third-party sites as ShareThis [51] and Tynt [55].

Another unsettling finding is that password meters com-
monly send passwords over the network. This is unnatu-
ral because the purpose is to help the user with estimating
the strength of such sensitive information as passwords. The
principle of least privilege |50] calls for restricting the compu-
tation to the browser. Nevertheless, we observe that 16.35%
of standalone password meters, 26.02% of standalone pass-
word generators, and 59.3% of password meters on service
signup pages send the password over the network, of which
76.47%, 96.08%, and 3.92% send the password in cleartext

5‘ passive network attacker.
intercepts password

1. password sent over
network in plaintext

€ c
Password:([e e @ @ @ @ Check
NN
PEPTTELL L O rrhy tLEL |V SR
ﬁ i password is read and %
R ., leaked to attacker ¥o,
~,...'A
g .
 malicious JavaScript code H
% is loaded and executed 3===*"""

................................

Figure 1: Threats for state-of-the-art password meters

(over HTTP). Figure[I|illustrates the possible attacks. When
HTTP is used, the passive network attacker might get hold of
the password by sniffing the network traffic. When HTTPS is
used, the second-party server (standalone password meter or
generator) gets hold of the password, an undesired situation
for the first-party service associated with the tested password.

Astonishingly, only one service from all the web services

from our empirical study sends hashed passwords to the server.
We will come back to this important point in the space of de-
sign choices.
Getting it right. With the identified shortcomings of the
state of the art at hand, we argue for a sandboxed client-
side framework and implementation for password meters and
generators on the web. From the point of security, such an
implementation honors the principle of least privilege: the
password stays with the client with password strength esti-
mation/generation executed by JavaScript within the brow-
ser. The sandboxing guarantees that the JavaScript code
does not access the network. From the point of usability,
this enables users to test their actual passwords rather than
being forced to distort the original passwords (see the discus-
sion below in the context of the case study). Finally, from
the performance point of view, this allows entirely dispensing
with client-server round trips for each request. This enables
substantial speedup for processing password strength estima-
tion.

Clearly, sending the password to the server can be reason-
able for the password meters on service signup pages, where
the implementations require that user passwords are stored
on the server anyway. However, when it comes to standalone
password meters and generators, we make a case for client-
side deployment. One possible argument for involving the
server in password strength estimation is that the server can
check passwords against a dictionary of common words/pass-
words or a known database of leaked passwords. However,
this only makes sense if the size of such a dictionary/database
is significant (in which case the secure way to implement the
service is to send salted and hashed passwords over HTTPS).
We argue that commonly-used password meter libraries, such
as CrackLib [10] and zxcvbn [67], are based on dictionaries
of size that is susceptible to client-side checking.

Likewise, a reason to generate a password on the server
side, is that JavaScript’s built-in random number generator
is not cryptographically secure on all browsers. The Web
Cryptography API [63] will remedy this when it is standard-
ized. In the meantime, there are JavaScript libraries, such as
CryptoJS [12], that provide secure cryptographic algorithms
to generate random numbers.

> c) A
Password:|e e e e e @ Check

- - -
(2. password read locally)L 5(4‘[‘;?1(5“1%':‘;
Jﬂ SandPass

3. framework

consults
modules -3-- -3 --)-- ,
' :

on

Y =

1. third party code is
loaded into sandbox

........................

Figure 2: Secure SandPass framework

Generic framework for sandboxing. As a concrete im-
provement of the state of the art, we propose SandPass, a
general web framework that allows secure and modular port-
ing of password meter and generation modules. The frame-
work provides a generic technique for secure integration of
untrusted code that operates on sensitive data, while stripped
of capabilities of leaking it out. We show how to run pass-
word meter/generator code in a separate iframe while dis-
abling outside communication and preventing possible pass-
word leaks. Figure illustrates the security of the framework.
Third-party code is loaded in isolated sandboxes without net-
work access. The framework reads the password locally and
consults the modules to score the password strength. Any
databases with commonly used passwords or hashes are loaded
into the isolated sandboxes as well. We demonstrate the
usefulness of the framework by a reference implementation,
where we show how to port such known password meter mod-
ules as CrackLib [10].

Case study. Following responsible disclosure, we have con-
tacted the web sites that send out passwords and pointed
out the vulnerability. One of our reports has resulted in a
subsequent case study of a service by the Swedish Post and
Telecommunication Agency (Post- och telestyrelsen, PTS) [45],
a state agency that oversees electronic communications in
Sweden. The case study is based on PTS’ Test Your Password
service (Testa ldsenord) [54]. A quick Internet search of pages
linking the service suggests that this service is often recom-
mended by the Swedish organizations, including universities,
and the media when encouraging users to check the strength
of their passwords. According to PTS, over 1,000,000 pass-
words have been tested with the service [46].

On the positive side, PTS’ service avoids including third-
party scripts. However, it sends (over HTTPS) the actual
passwords to the server. PTS realizes that this might be
problematic, which is manifested by encouraging the users
on the web page not to use their actual passwords [46]. Not
only does this make the service insecure (the users’ passwords
or their derivatives are leaked to PTS) but also severely lim-
its its utility (the users are forced to distort their passwords
and guess the outcome for the real passwords). In addition,
the performance of the service is affected by communication
round trips to the server on each request.

To help PTS improve the service, and with our reference
implementation as the baseline, we have implemented a ser-
vice that improves the security, utility, and performance of
the Test Your Password service. The security is improved as
already illustrated by Figure [2] in contrast to Figure [I] The

utility is improved by enabling the users to test their real
passwords. We have also made the service more interactive,
providing feedback on every typed character instead of the
original service where the users type the entire password and
press a submit button. Due to the volume of JavaScript, our
load-time performance increases with the order of 2.5x (un-
noticeable for user experience). However, the speedup for the
actual password processing is in the order of 34x because it
is unnecessary to communicate with the server.

Contributions. A brief summary of the contributions is:

e Bringing much needed attention of the security com-
munity to the problem of design and implementation of
password meters and generators on the web.

e The first large-scale empirical study of security of web
password meters, password generators, and account reg-
istration pages.

e Uncovering unsatisfactory state of the art: we point out
unnecessary trust to third-party servers, second-party
services, and the network infrastructure.

e Development of a generic sandboxing framework that
allows code to operate on sensitive data while not al-
lowing leaks out of the sandbox.

e Design and implementation of SandPass, a secure mod-
ular password meter/generator framework. We demon-
strate security with respect to both the web and passive
network attacker.

e Case study with a password meter by the Swedish Post
and Telecommunication Agency to improve the security,
utility, and performance for a widely used service.

The code for SandPass and case study are available online [58|.

2. STATE OF THE ART

To gain insight in password meters and password genera-
tors, we performed an extensive Internet search to find stan-
dalone instances of them. In addition to occurrences in the
wild, they also occur on account signup pages. Since no
instances of password generators were observed on signup
pages, we do not consider those.

All experiments are based on a common setup which, be-
sides the Firefox browser, also incorporates PhantomJS and
mitmproxy.

PhantomJS [4] is a headless browser based on WebKit,
scriptable through a JavaScript API. PhantomJS will load
a page, render text and images, and execute JavaScript as
any regular browser. Interaction with a loaded page can be
scripted through a JavaScript API, allowing a user to au-
tomate complicated interactions with a web application and
process the response. In our experiments, PhantomJS was
used to render screenshots of websites once they were loaded
and had their JavaScript code executed.

Mitmproxy [3| is a man-in-the-middle proxy which can be
used to log, intercept, and modify all HTTP and HTTPS re-
quests and responses passing through it. A CA SSL certificate
can be installed in browsers making use of mitmproxy, allow-
ing it to also intercept and modify encrypted traffic without
the browser noticing. Python scripts can register hooks into
mitmproxy, which are triggered on requests and responses,
and which can perform custom actions not originally imple-
mented into mitmproxy. In our experiments, we use mitm-
dump, a version of mitmproxy without a Ul, together with

custom hooks that trigger certain actions when a special URL
is visited.

The typical workflow of any of our manual experiments is
driven by a control-loop which launches a clean Firefox in-
stance and opens an URL to investigate. All traffic is moni-
tored and logged while the user interacts with the loaded web-
page. Bookmarklets [35] are used to log information about
the visited webpage and transfer that information from Fire-
fox through mitmproxy into the control-loop.

2.1 Stand-alone password meters

Setup. We queried Bing for typical keywords associated with
password meters, e.g. “password strength checker”, “website
to test password strength”, “how secure is my password”, ...
and stored the top 1000 returned URLs for each set of key-
words. This resulted in a total dataset of 5900 unique URLs.
A number of these webpages are related to password meters
in some way, but do not actually contain a functional pass-
word meter. To filter those from the dataset, we rendered
screenshots for all URLs using PhantomJS, classified them
manually and only retained the functional password meters.

Each of the password meters was visited manually using
the common setup, and interacted with to input a 20 charac-
ter password. The response of the webpage was observed to
determine whether visual feedback about the strength of the
given password was given. During this interaction, all HTTP
and HTTPS network traffic was intercepted and logged by
mitmdump.

This traffic was then analyzed to see whether any form of
the password was transmitted over network. Because some
forms might truncate the entered password to a shorter length,
we searched for the first 8 to 20 characters of the password. To
make sure the password was not sent in an encoded form, we
also looked for the MD5, SHA1, SHA224, SHA256, SHA384,
SHAJ512 hashes as well as the Base64 encoding of the different
versions of the password.

Results. In the set of 5900 URLs returned by Bing, we found
104 functional password meters. Of those 104, 98 included
JavaScript of which 88 were over an insecure HTTP con-
nection, and 81 included JavaScript from a third-party host,
with 73 over HTTP. 86 password meters gave visual feedback
about the strength of the given password without the user
having to press a submit button.

While interacting with the password meters, 17 sent out the
password over the network and 13 did so over an unencrypted
HTTP connection. Of those 17, 15 required a submit but-
ton to be pressed, but two did not and sent the password to a
server in the background. Only one of those 17 (http://www.
check-and-secure.com/passwordcheck/) after having pressed
submit, sent the password in a hashed format over the net-
work instead of in plaintext, using both the MD5 and SHA256
hash formats.

None of the observed password meters submitted the pass-
word to a third-party host.

2.2 Stand-alone password generators

Setup. We again queried Bing, this time for keywords asso-
ciated with password generators, e.g. “password generator”,
“passphrase creator”, “create password online”, ... and stored

the top 1000 returned URLs for each set of keywords. This

resulted in a total dataset of 8150 unique URLs.

Just as with the raw
“password meter” dataset,
this set of URLs contained
a number of pages related
to, but not containing a
password generator. We
again rendered screenshots
for all URLs and classified
them manually.

Each password genera-
tor was then visited using
our common setup, and in-
teracted with to generate a
password. As Figure [3] suggests, users often have to interact
with a password generator to customize its parameters and
generate a strong password. The generated password was
logged through a bookmarklet so its presence could be de-
tecting in incoming or outgoing network streams. Again, all
network traffic generated during each of the visits was logged
with mitmproxy.

The network traffic captured during the visit of each pass-
word generator was then analyzed to see whether the pass-
word, or any truncated or encoded form of it, was transmitted
over network either in the requests or their responses.

Strong Password Generator

Password length: | 15
Punctuation (1, ", £, . 3, and s0 on)

Generate strong password J

Your new password:

LX}1T2T7U0ItuOW

Remember your new password as:

LIMA X-RAY } 1 TANGO 2 TANGO 7 UNIFORM @
INDIA tango uniform OSCAR WHISKEY

Figure 3: Example password
generator

Results. In the set of 8150 URLs returned by Bing, we found
392 functional password generators. Of those 392, 117 did not
require user input to generate a password. In total, 351 of
them included JavaScript, of which 332 were over an unen-
crypted HTTP connection, and 301 included JavaScript from
a third-party host, of which 283 were over an unencrypted
HTTP connection.

We have contacted the owners of several password gener-
ators in order to determine how often their service is used.
The three replies we received indicate between 50 and 115
page views on average per day.

After interacting with the password generators, 100 of them
generated a password on the server side and transmitted it
back to the browser. 96 of those responses happened over an
unencrypted HTTP connection.

Surprisingly, six password generators also transmitted the
generated password over the network from the client side.
Two of those had generated the password locally, while the
remaining four received it from a server. While three of the
six sent the password back to a server in their own top-level
domain, the other three sent the password to two popular
JavaScript widgets which enable and track content-sharing
on webpages: ShareThis [51] and Tynt [55].

2.3 Password meters on registration pages

Setup. For each domain in the Alexa top 250, we visited
the topmost webpage (e.g. http://example.com for exam-
ple.com) and searched for an account signup form by follow-
ing links and instructions on that webpage. If a signup page
was found, and it allowed us to signup for an account freely
and easily (e.g. without having to enter a social ID, a credit
card number, waiting for an invitation e-mail or other), the
URL of the signup page was kept as being usable for this
experiment.

We then visited each usable signup page manually using our
common setup and typed in a strong 20 character password in

http://www.check-and-secure.com/passwordcheck/
http://www.check-and-secure.com/passwordcheck/
http://example.com

Create a password

Password strength: Good

Use at least 8 characters. Don't use a
password from another site, or something
too obvious like your pet's name. Why?

Confirm your password

Figure 4: Example password meter from Google

the password field, but we did not click the submit button to
complete the signup procedure. Figure |4 shows the password
meter in action during our visit to the Google signup page,
without having to click a submit button. Again, all HTTP
and HTTPS network traffic generated during the visit was
logged with mitmproxy.

The network traffic of each visit was analyzed to see whether
the password, or any truncated or encoded form of it, was
transmitted over network.

Results. From the top 250 Alexa domains we included in our
experiment, we discovered 186 usable signup forms. Of the
186 signup pages, 86 use a password meter to give instant
visual feedback to the registering user about the strength of
the chosen password. Of those 86 signup pages with a pass-
word meter, 83 include third-party JavaScript code and 51
transmitted the entered password to a remote server in the
background. Of those last 51 password-transmitting pass-
word meters on signup pages, two sent the password over
unencrypted HTTP.

None of the signup pages sent the password to a host on a
third-party domain.

2.4 Discussion

The most insightful results from the previous experiments
with regard to our threat model, are summarized in Figure[f]
Figure @ and Figure m

177.9%
1 76.8%

Password meters |
Password generators |
Password meters on signup pages
0% 20% 40% 60% 80%
Percentage of dataset

196.5%
100%

Figure 5: Fraction of dataset including 3™ party JS

Third-party web attacker. Figure [5| shows that the ma-
jority of webpages in all three datasets include third-party
JavaScript in a JavaScript environment that has access to
the password field: 77.9% of standalone password meters,
76.8% of standalone password generators and 96.5% of pass-
word meters on account signup pages.

The inclusion of third-party JavaScript can pose a real
threat when that JavaScript is under the control of a third-
party web attacker [36]). Even if the author of third-party
JavaScript code is not malicious, the host on which this code
is located might be compromised. In that case nothing pre-
vents the attacker from creating JavaScript to read all entered
passwords and leak them to the Internet.

Nikiforakis et al. [36] show that close to 70% of the top
10,000 Alexa domains include Google Analytics. We believe
that our similar result does not diminish our findings because
it indicates that the developers of password meters and gen-
erators are unaware of the security implications of including
third party JavaScript code.

Although we did not observe any malicious scripts that are
actively intercepting and stealing passwords, we have found
three cases of standalone password generators from which the

generated passwords are leaked by third-party JavaScript de-
signed to monitor content sharing.

Password meters [__116.35%
Password generators [1 26.02%
Password meters on signup pages 159.3% |

0% 20% 40% 60% 80%
Percentage of dataset
Figure 6: Fraction of dataset transmitting the password

Second-party web attacker. Figure [6]shows that 16.35% of
standalone password meters, 26.02% of standalone password
generators and 59.3% of password meters on account signup
pages transmit passwords over the network to a remote server.
This behavior is not isolated to lesser-known websites, but
also occurs in highly Alexa-ranked domains. E.g. the pass-
word meter on Google’s account signup page transmits the
password over the network when this password exceeds seven
characters.

Despite the availability of client-side solutions for the im-
plemented services, there is a significant fraction that opts to
send the password over the network and either check it on a
remote server, or generate it on a remote server. It is hypo-
thetically possible that these services use resource-intensive
computations that are impractical to implement in client-side
JavaScript. However, it is just as well possible that these
services have been implemented by second-party web attack-
ers with the purpose of tricking visitors into revealing their
password and logging them. Nothing distinguishes these two
possibilities for the user.

100%

Password meters 176.47%
Password generators 1 96.08%
Password meters on signup pages [3.92% | | |
0% 20% 40% 60% 80% 100%

Percentage of dataset

Figure 7: Fraction of password transmissions in the clear

Network attacker. Assuming that a second-party web at-
tacker is not involved, there may be a need to send the pass-
word over the network. However, it would be unwise to send
these passwords over the network in plaintext, without using
encryption via HTTPS. Yet, as Figurem shows, the majority
of standalone password meters and generators (respectively
76.47% and 96.08%) do not use encryption when transmit-
ting the password. On the other hand, only 3.92% of the ac-
count signup pages, with a password meter, from the top 250
Alexa domains transmit the password without encryption.
This data shows that a 96.1% majority of the Alexa top 250
website providers, in contrast to the providers of the stan-
dalone password meters and generators, better understand
the dangers in sending password over an unencrypted con-
nection. The handful of account signup pages in our dataset
that do not use encryption when transmitting a password, can
have their user’s passwords intercepted by a passive network
attacker.

3. CLIENT-SIDE FRAMEWORK

3.1 Framework

Based on our observations in the web and the attacker
model, we identify requirements for the implementation of se-
cure password meters/generators. To support web developers
to fulfill these requirements in practice, we design SandPass,
a JavaScript framework for secure client-side password me-
ters/generators.

Requirements. The current state of the art for password me-
ters and generators is vulnerable to attacks as described in
our threat model in Section[I]] The wide use of unencrypted
HTTP connections, especially when transmitting passwords
in plain text, allows for passive network attacks. But even
with encrypted connections, second- and third-party web at-
tackers can be successful by stealing the password from the
webpage or tricking the client to send data over the network.
However, completely banning third party code from a web
page is usually not a realistic option. Also, preventing a web-
site from sending any data over the network at all proves im-
practical. For example, a registration page with an integrated
password meter must be able to send the user credentials to
the server to complete the registration process.

It is therefore desirable to have a client-side service which
on the one hand allows the inclusion of existing third party so-
lutions for password metering and password generation, while
on the other hand restricting the code’s capabilities so that
it cannot leak any password information. The concrete re-
quirements for a framework to support such a service are as
follows:

Client-side only: To prevent a password from being leaked,
the password meter/generator does not require server access
in order to provide the service. Thus, all password meter/-
generator related code must be executed on the client side.

Small code base: The framework code is as small as pos-
sible to allow easy revision by web developers integrating the
framework in their web page.

Code inclusion: The framework allows the inclusion of
third-party code for password metering/generation.

Code isolation: To prevent JavaScript code from interfer-
ing with code of other modules or the main page, each module
is isolated from the rest of the web page.

No network access: Included JavaScript code cannot send
or leak password information over the network.

Result validation: The results of each module are vali-
dated before they are used in the main page to avoid content
injection attacks.

Safe integration: The framework follows the current best
practice for secure web implementations (e.g. the guidelines
given by OWASP [39)), i.e. the framework is not the “weakest
link” in an otherwise securely programmed web page.

Architecture. The architecture of SandPass is general enough
to use it for both password meters and password generators.

For password meters, we assume a setting as illustrated in
Figure A user can type in the password in an input field
on the main page which the framework then passes to the
password meter code for analysis. For password generators,
we assume a similar setting with the difference that the user
can specify password generator options instead of supplying
a password to be tested. SandPass then passes the generator
options to the password generator code.

The result of the password/generator is then shown to the
user on the same web page. The framework code itself is di-
rectly included in the main page and handles the collection of
the input data, running the password meter/generator code,
and calling the routines for updating the web view (steps 24
in Figure . These steps are executed every time a password
has to be checked or generated.

The program code which actually performs the password

© 00O Uk WN—

metering/generation is downloaded by the framework and in-
tegrated in the web page as so called modules (step 1 in Fig-
ure [2)). The purpose of modules is to isolate the third-party
code from the web page as well as to restrict its network
access.

3.2 Reference implementation

The reference implementation of SandPass respects the re-
quirements and uses the architecture as described in the pre-
vious section. Additionally, we avoid using non-standard li-
braries to prevent dependencies on third-party code which
could open security breaches in the framework. Instead, Sand-
Pass uses only standard browser features and JavaScript APIs
as specified for HTML5 [62].

Standard browser features. The HTML5 iframe [17] ele-
ment allows the embedding of web pages within others. Brow-
sers limit access between iframes according to the Same-
Origin Policy (SOP). With the sandbox attribute set, a brow-
ser assigns a unique origin to the iframe, strengthening the
SOP access restrictions. By default, the sandbox attribute
also disables scripts, forms and popups, which can be re-
enabled using the respective keywords.

The JavaScript browser API method postMessage [43] pro-
vides a cross-origin communication channel for sending data
between browser contexts, e.g., an iframe and its host page.
A browser context can add an event listener for receiving
and handling messages. Besides the actual data, the message
contains a source attribute which can be used for sending
response messages to the dispatcher.

The Content Security Policy (CSP) [9] specifies the sources
a web page is allowed to access and which protocols to use.
The main purpose of CSP is to mitigate the risks of con-
tent injection attacks. It therefore prohibits by default inline
scripts and the JavaScript eval function. These restrictions
can be lifted by using the keywords "unsafe-inline" and
"unsafe-eval", respectively. Though usually defined on the
server side, the policies are enforced completely in the client’s
browser.

<!-- fetch framework code from server -->
<script language="javascript" src="pwdmeter.js" />
<script language="javascript" />
/* respective callback functions */
function resultHandler(res) { ... };
/* module inclusions */
include ("http://example.com/m. js", resultHandler, "
check");
/* running a password strength analysis */
runSandPass ("myPassword") ;
</script>

Listing 1: Example code for including SandPass

SandPass is fully implemented in JavaScript. After down-
loading the framework and module scripts, all code is exe-
cuted in the browser without any further server interaction.

The framework can be added to the main web page through
common JavaScript inclusion techniques, e.g., through the
HTML script element. Listing [I| shows an example web page
snippet including the framework in line 2]

SandPass provides an include function for the inclusion of
modules. The function parameters are a list of all URLs of
the script file included in the same module, the result handler

function, and the name of the module’s main function, i.e. the
function called to later execute the module. When include is
called, the framework fetches the module code from the given
sources and creates the respective module.

The result handler is a JavaScript function which is called
after the associated module returns a result. Its main purpose
is to present the result to the user by updating the main web
page. Since the demands for the result handler vary for each
individual page design, the web developer is completely free
to implement this function as she sees fit. The example in
Listing [1| defines a result handler in line |§| which is used in
line [9] when including modules in the framework.

The framework’s runSandPass function triggers the pass-
word metering or generation (line[12|in Listing[1]). The func-
tion does not implement any metering/generation logic itself
but uses the postMessage to call the respective main function
of the included modules and to provide the necessary data,
e.g. the password.

When a module returns a result to the main page, the
framework calls the respective result handler for providing
feedback to the user.

Modularity. SandPass modules are implemented as iframes
which create a new and secure execution context for included
JavaScript code. Each iframe enables the sandbox attribute
which limits the access permissions to the Document Ob-
ject Model (DOM) of the sandboxed code to its own unique
browser context. Since the purpose of a module is to run
JavaScript code, the framework also uses the "allow-scripts"
keyword to re-enable scripts in the sandbox.

Each module contains a basic HTML document which de-
fines the most restrictive CSP rule, prohibiting access to any
network resource from within the iframe.

The framework core and a module communicate through
the postMessage API function. A module therefore contains
a message receive handler. On receiving a message, it calls
the modules main function and sends its result back to the
framework, again using postMessage.

The framework imposes no restrictions on the included
JavaScript code, i.e. a web developer can include code from
any source as she sees fit in the sandbox. This allows Sand-
Pass to be utilized for both password meters and password
generators.

4. CASE STUDY

The case study is based
on the password meter J—
by the Swedish Post and]
Telecommunication Agency
(PTS). Their password me-
ter web page, shown in
Figure [8] contains an in-
put field in which a user peet
can type the password.
When the submit button
(“Testal”) is clicked, the - s iz
password is sent to PTS
for the actual checks. The
reply is an updated web page with feedback based on the
results of the algorithms run on server side.

Besides syntactical checks, e.g. for the usage of upper- and

/Svag '

\ teckenkombination Kriv inte
\

Losenord: [myPassword

Figure 8: PTS passwordmeter

lower-case letters, PTS uses the open-source library CrackLib.
CrackLib checks if a password is somehow derivable from any
word within a given dictionary. It applies transformations to
the given password and checks the result for existence in the
dictionary. For example, CrackLib substitutes all digits in
“p455w0rd” with their respective leet speak |26] counterparts
and transforms it to “password” which can be found in a com-
mon English dictionary.

CrackLib is fully written in C. For inclusion as a module
in SandPass it has therefore been necessary to translate it
to JavaScript. Additionally, we’ve implemented a separate
script for the syntactic checks. We have then modified the
PTS service to include SandPass, replacing the transmit ac-
tion of the submit button with the runSandPass function of
the framework. To provide the same results as the server-side
approach, the JavaScript version of CrackLib and the script
for syntactic checks have been included as modules. The re-
spective result handler functions have been implemented to
update the web page to match the layout of the original ser-
vice.

As a positive side effect, the good performance of SandPass
has allowed us to enable checks on every keystroke made by
the user and we have therefore even improved the user ex-
perience through immediate feedback. Before, the password
had had to be sent to the server first for feedback.

5. EVALUATION

SandPass implements the general requirements and archi-
tecture presented in Section [3.I] We have evaluated the
framework to see how it prevents the attacks from the at-
tacker model, i.e. the passive network attacker and the second-
and third-party web attacker. We’ve also looked at the prac-
tical implications of SandPass for security and performance.

5.1 Security evaluation

Security guarantees. SandPass is a framework which is de-
signed to support the implementation of fully client-side pass-
word meters and password generators. Client-side code exe-
cution renders leaking a password for analysis to the server
or requesting password generation from the server redundant.
In fact, the framework defines a CSP rule for included code
which completely forbids any network traffic. As an impli-
cation, no password information can be leaked to a second
party web attacker. Additionally, a passive network attacker
cannot sniff for transmitted passwords, which is in particular
the case when data is sent over only HTTP.

The framework modules are implemented as sandboxed
iframes which are treated by browsers as if their content
comes from a unique origin. This behavior in combination
with the SOP, implemented and enforced by browsers, pre-
vents the code of a module from accessing the DOM of the
main page or even other modules. Therefore, the JavaScript
code included in a module is isolated and cannot tamper with
the rest of the web page. As mentioned before, the frame-
work prevents communication with external resources by im-
plementing the most restrictive CSP for each module, i.e. it
forbids any network traffic from within a module. Therefore,
a module cannot leak a password to a server. As a result,
modules mitigate the threat imposed by third party web at-
tackers and a web developer can include untrusted scripts as
modules without compromising the web page’s security. Note
that our policy for modules affects only modules but not the

N =

W=

o ot

rest of the web page and a web developer retains all freedom
in its design.

Security considerations. Though SandPass comes with the
above security guarantees, there are some security consider-
ations which must be addressed when using web frameworks
in general.

Firstly, the administrators of a web server must ensure and
maintain the security properties for their servers. For Sand-
Pass this means that the integrity of the framework’s source
code must be guaranteed. Otherwise, an attacker can easily
disable security features or even replace the framework code
entirely. For password meter/generator scripts, Cross-Origin
Resource Sharing (CORS) [60] must be allowed to permit
web pages of other domains to download the source codes
and include them as modules. Otherwise, the scripts will be
blocked by the SOP enforcement mechanism in the client’s
browser.

Secondly, the integrity of the framework code must not only
be ensured on the server side, but also during the transmission
over the network. To limit the risks of attacks there, the
server can be configured to always use encrypted connections,
i.e. to use HTTPS.
function evilFun(pwd) {

return "";

}
Listing 2: Example script code for malicious module

<script language="javascript" />
function resHandler (result) {
document . getElementById ("myElem") .innerHTML =
result;
}
include ("http://example.com/ml.js", resHandler,
evilFun") ;
</script>
<p id="myElem"></p>

"

Listing 3: Example code vulnerable to code injection

Thirdly, since CSP restricts the modules’ network access,
it is important that a module can not simply navigate its
containing iframe to a page without such a restriction by
e.g. manipulating document.location. To prevent this, the
web page in which SandPass is integrated, must restrict the
contents of the module iframes by setting the child-src CSP
directive to e.g. self or none.

Finally, though every module is isolated through a sand-
boxed iframe, the framework allows data to flow to the main
page through calls of the postMessage function. On receiv-
ing the data, the framework runs the respective result han-
dler function, i.e. the handler is executed in the context of
the main page. Thus, malicious modules can attack the main
page through content injections if the result values are not
verified properly. Listing |2| shows a possible attack scenario
in which a module’s main function named evilFun returns a
string containing HTML code for an img element. In List-
ing the module’s result handler directly assigns the re-
turned value to the element myElem on the main page. When
executed, this creates a img element inside the web page’s
body. On loading the image source, the password is leaked to
evil.com as part of the URL. This attack can be avoided by,
e.g., validating the return value in the result handler or by as-
signing the return value to the safer HTML element property
textContent [61] instead of innerHTML.

Besides that a wary administrator considers most of the
above security issues for all of the services, using SandPass
has the benefit that the code for the modules does not need
to be hosted, analyzed for malware, updated, or otherwise
maintained. The SandPass consists of a small trusted code
base (76 LOC), which can be easily reviewed. The modules
can be included safely from third parties in a similar way as
it is common practice for libraries such as jQuery.

5.2 Performance evaluation

Our performance evaluation [58] (See Appendix [A]for more
detail) indicates a 106ms overhead in loading time over the
baseline of 72ms, mostly due to Cracklib’s built-in dictionary.
The microbenchmark indicates a factor 34x improvement over
the delay experienced during a single password check in our
PTS use case, and still a factor 2.5x improvement when the
server-side password meter is on localhost. Because loading
the password meter only needs to happen once, and will be
cached by the browser afterwards, the load time delay is neg-
ligible. Combined with the results from the microbenchmarks
and security evaluation, using a client-side password meter is
beneficial for both security and performance.

6. RELATED WORK

Service providers encourage users to select stronger pass-
words by guidelines to improve the password entropy [16,
31]. The general problem of defining password strength is
addressed by a large body of work, based on both estimating
password entropy [8) [7] and on empirical password-guessing
techniques and tools [44] [64] |23] that might have access to
passwords that have been leaked in the past.

Egelman et al. [15] have studied the impact of password me-
ters on password selection in experiments with user groups.
The conclusion is that password meters are most useful when
users are forced to change passwords.

de Carné de Carnavalet and Mannan 13| analyze password
strength meters on popular web sites. They mention a clas-
sification of web sites into client-side, server-side, and hybrid
meters, but the focus of their study is the password strength
metrics and consistency of outcomes. As mentioned earlier,
determining password strength is orthogonal to the goals in
this paper. Our focus is on secure deployment of password
meters and generators in the web setting.

Among the password meters we discuss in Section a pop-
ular one is Dropbox’s client-side password meter [67] that in-
cludes a number of syntactic and dictionary checks but pro-
vides no modular architecture or code isolation. It can be
easily plugged into SandPass as a module. Another notewor-
thy project is Telepathwords [48] that attempts guessing the
next character of a password as the user types it.

Language-subset JavaScript sandboxing techniques as 28,
11} 42] require the JavaScript code to be written in a safe
subset of JavaScript. Such sandboxes place restrictions on
JavaScript code, which third-party code providers are of-
ten hesitant to follow. Other JavaScript sandboxing tech-
niques [33} |19} |32, 47| 22| require remote JavaScript code
to be rewritten or instrumented on the server. These as-
sume that a developer has access to an execution environ-
ment on the server, on which to perform the rewriting. Yet
other JavaScript sandboxing techniques as |30} 57} 27] require
modifications to the browser, which is a drawback for such a
dynamic environment as the Internet, without tight control
over browser vendors and versions.

There are approaches to JavaScript sandboxing |53} (41} |29,
1l 118, [24] |66} |21] that require neither server-side modifica-
tion of code nor specially added client-side support. Instead,
they use existing security features available in the browser.
Some of these [53] |24, 66l |21] do not offer any means to
block network traffic generated by the sandboxed JavaScript,
and might allow data to leak out this way. Those sand-
boxes that can restrict network traffic [41] 29, |1} 18] introduce
wrapper code around basic DOM functionality, which can be
controlled by a fine-grained control mechanism. SandPass
does not require such custom fine-grained control over basic
DOM functionality, and uses standard browser functionality
instead: the modules execute in a sandboxed iframe with a
unique origin and CSP blocks all network traffic. Because
of the usage of standard browser functionality, SandPass’s
codebase is small and can easily be code-reviewed.

7. CONCLUSION

We have presented a large-scale study of web-based pass-
word meters and generators. To our knowledge, this is the
first such study that addresses secure deployment of password
meters and generators on the web. It is alarming that services
that are trusted to handle sensitive password information take
the liberty to extend the trust to third-party web sites. We
find that the vast majority of password meters and generators
are open to third-party attacks. Further, we show that some
password generators actually leak passwords to third-party
web sites via JavaScript. We also find that online password
meters are not widely adopted on account registration pages,
but most of them also follow unsafe practices allowing cre-
dentials to leak away. Another finding is that a substantial
fraction of password meters sends passwords to the network,
sometimes in plaintext.

As a concrete step to advance the state of the art, we have
designed and implemented SandPass, a modular and secure
web framework for password meters and generators. By ap-
propriately tuning the CSP policy for iframes, we achieve
code isolation for password meter/generator code, enabling
security, usability, and performance improvements. We show
the usefulness of the framework with a reference implemen-
tation that indicates that client-side deployment is advanta-
geous even in cases when password meters include dictionary
checks. To further demonstrate the benefits of the framework,
we perform a successful case study that allows improving the
security, usability, and performance of the password strength
meter provided by PTS.

SandPass enables a general technique for modular and se-
cure sandboxing of untrusted code. There is a number of
independently interesting applications scenarios for this type
of sandboxing. For example, a loan or tax calculator needs
access to users’ private financial information, which the users
might not like to leave the browser.

On the side of practical impact, we are currently in contact
with PTS to help improve the current service [54] with our
case study as the base.

Acknowledgements. This work was partly funded by the
European Community under the ProSecuToR and WebSand
projects and the Swedish research agencies SSF and VR. It
was also partially funded by the Research Fund KU Leu-
ven, and by the EU FP7 project NESSoS. With the financial
support from the Prevention of and Fight against Crime Pro-
gramme of the European Union (B-CCENTRE).

8. REFERENCES

[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung,
L. Desmet, and F. Piessens. JSand: complete client-side
sandboxing of third-party JavaScript without browser
modifications. In ACSAC, 2012.

[2] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and
D. Song. Towards a formal foundation of web security.
In CSF, 2010.

[3] Aldo Cortesi. mitmproxy. http://mitmproxy.org.

[4] Ariya Hidayat. PhantomJS. http://phantomjs.org.

[5] Badpass: password strength indicator. https://
addons.mozilla.org/en-US/firefox/addon/badpass/.

[6] J. Bonneau, C. Herley, P. C. van Oorschot, and
F. Stajano. The quest to replace passwords: A
framework for comparative evaluation of web
authentication schemes. In S&P, 2012.

[7] W. E. Burr, D. F. Dodson, W. T. Polk, and D. L.
Evans. Electronic authentication guideline. In NIST
Special Publication, 2004.

[8] L. S. Clair, L. Johansen, W. Enck, M. Pirretti,

P. Traynor, P. McDaniel, and T. Jaeger. Password
exhaustion: Predicting the end of password usefulness.
In ICISS, 2006.

[9] Content security policy 1.0.
http://www.w3.org/TR/CSP/|

[10] CrackLib. http://cracklib.sourceforge.net/|

[11] D. Crockford. ADsafe — making JavaScript safe for
advertising. http://adsafe.org/.

[12] CryptoJS. https://code.google.com/p/crypto-js/.
[13] X. de Carné de Carnavalet and M. Mannan. From very
weak to very strong: Analyzing password-strength

meters. In NDSS, 2014.

[14] P. Eckersley. How unique is your web browser? In PET,
2010.

[15] S. Egelman, A. Sotirakopoulos, I. Muslukhov,

K. Beznosov, and C. Herley. Does my password go up
to eleven?: The impact of password meters on password
selection. In SIGCHI, 2013.

[16] Google password help.
https://accounts.google.com/PasswordHelp.

[17] Html - living standard: The iframe element.
http://www.whatwg.org/specs/web-apps/
current-work/multipage/the-iframe-element.html.

[18] L. Ingram and M. Walfish. TreeHouse: JavaScript
sandboxes to help web developers help themselves. In
USENIX ATC, 2012.

[19] Jacaranda. Jacaranda. http://jacaranda.org]

[20] C. Jackson and A. Barth. Forcehttps: protecting
high-security web sites from network attacks. In
WWW, 2008.

[21] C. Jackson and H. J. Wang. Subspace: secure
cross-domain communication for web mashups. In
WWW, 2007.

[22] T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-Enforced Embedded
Policies. In WWW, 2007.

[23] P. Kelley, S. Komanduri, M. Mazurek, R. Shay,

T. Vidas, L. Bauer, N. Christin, L. Cranor, and
J. Lopez. Guess again (and again and again):
Measuring password strength by simulating
password-cracking algorithms. In S&P, 2012.

http://mitmproxy.org
http://phantomjs.org
https://addons.mozilla.org/en-US/firefox/addon/badpass/
https://addons.mozilla.org/en-US/firefox/addon/badpass/
http://www.w3.org/TR/CSP/
http://cracklib.sourceforge.net/
http://adsafe.org/
https://code.google.com/p/crypto-js/
https://accounts.google.com/PasswordHelp
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html
http://jacaranda.org

[24]

[25]

[45

[46]

F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and
S. Yoshihama. Smash: secure component model for
cross-domain mashups on unmodified browsers. In
WWW, 2008.

D. V. Klein. Foiling the cracker: A survey of, and
improvements to, password security. USENIX Security,
1990.

Leet. http://en.wikipedia.org/wiki/Leet!

T. Luo and W. Du. Contego: capability-based access
control for web browsers. In TRUST, 2011.

S. Maffeis and A. Taly. Language-based isolation of
untrusted Javascript. In CSF, 2009.

J. Magazinius, P. Phung, and D. Sands. Safe wrappers
and sane policies for self protecting JavaScript. In
Nordsec, 2010.

L. Meyerovich and B. Livshits. ConScript: Specifying
and enforcing fine-grained security policies for
Javascript in the browser. In S&P, 2010.

Create strong passwords. https://www.microsoft.
com/security/pc-security/password-checker.aspxl
Microsoft Live Labs. Live Labs Websandbox.
http://websandbox.org.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and

M. Stay. Caja - safe active content in sanitized
JavaScript. Technical report, Google Inc., June 2008.
R. Morris and K. Thompson. Password security - a case
history. Commun. ACM, 22(11):594-597, 1979.
Mozilla. Use bookmarklets to quickly perform common
web page tasks.
https://support.mozilla.org/en-US/kb/
bookmarklets-perform-common-web-page-tasks.

N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van
Acker, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna. You are what you include: large-scale
evaluation of remote javascript inclusions. In CCS,
2012.

P. Oechslin. Making a faster cryptanalytic
time-memory trade-off. In CRYPTO, 2003.

Openwall. John the ripper password cracker.
http://www.openwall.com/john/.

OWASP. HTML5 Security Cheat Sheet. https://wuw.
owasp.org/index.php/HTML5_Security_Cheat_Sheet!
OWASP. Password storage cheat sheet.
https://www.owasp.org/index.php/Password_
Storage_Cheat_Sheet.

P. H. Phung, D. Sands, and A. Chudnov. Lightweight
self-protecting JavaScript. In ASIACCS, 2009.

J. G. Politz, S. A. Eliopoulos, A. Guha, and

S. Krishnamurthi. ADsafety: type-based verification of
JavaScript Sandboxing. In USENIX Security, 2011.
Html - living standard: Posting messages.
http://www.whatwg.org/specs/web-apps/
current-work/multipage/web-messaging.htmll

R. W. Proctor, M.-C. Lien, K.-P. L. Vu, E. E. Schultz,
and G. Salvendy. Improving computer security for
authentication of users: influence of proactive password
restrictions. BRMIC, 34(2):163-9, 2002.

Swedish Post and Telecommunication Agency.
http://www.pts.se/.

A million tested passwords.
http://www.pts.se/en-GB/News/Press-releases/

[47]

[48]

[49]

[50]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

2012/A-million-tested-passwords/.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. BrowserShield: vulnerability-driven filtering
of dynamic HTML. In OSDI, 2006.

M. Research. Telepathwords: Preventing weak
passwords by reading your mind.
https://telepathwords.research.microsoft.com/.
Syrian Electronic Army uses Taboola ad to hack
Reuters (again).
https://nakedsecurity.sophos.com/2014/06/23/
syrian-electronic-army-uses-taboola-ad-to-hack
-reuters-again/.

J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. IEFE, 1975.
Sharethis. http://www.sharethis.com/.

Taboola. https://www.taboola.com/\

] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan.

AdJail: Practical Enforcement of Confidentiality and
Integrity Policies on Web Advertisements. In USENIX
Security, 2010.

Test your password (testa losenord).
https://testalosenord.pts.se/.

Tynt. http://wuw.tynt.com/.

B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass,
M. L. Mazurek, T. Passaro, R. Shay, T. Vidas,

L. Bauer, N. Christin, and L. F. Cranor. How does your
password measure up? the effect of strength meters on
password creation. In USENIX Security, 2012.

S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and
W. Joosen. WebJail: least-privilege integration of
third-party components in web mashups. In ACSAC,
2011.

S. Van Acker, D. Hausknecht, and A. Sabelfeld.
Password meters and generators on the web: From
large-scale empirical study to getting it right — full
version and code.

http://www.cse.chalmers.se/ andrei/SandPass/|
Verizon. 2014 data breach investigations report.
http://www.verizonenterprise.com/DBIR/2014/.
W3C. Cross-Origin Resource Sharing.
http://wuw.w3.org/TR/cors/|

W3C. Document Object Model Core — textContent.
http://www.w3.org/TR/DOM-Level-3-Core/core.
html#Node3-textContent.

W3C. W3C Standards and drafts - JavaScript APIs.
http://www.w3.org/TR/#tr_JavaScript_APIs.

Web Cryptography API.
http://www.w3.org/TR/WebCryptoAPI/.

M. Weir, S. Aggarwal, M. P. Collins, and H. Stern.
Testing metrics for password creation policies by
attacking large sets of revealed passwords. In C'CS,
2010.

J. J. Yan, A. F. Blackwell, R. J. Anderson, and

A. Grant. Password memorability and security:
Empirical results. S&P, 2004.

S. Zarandioon, D. Yao, and V. Ganapathy. Omos: A
framework for secure communication in mashup
applications. In ACSAC, 2008.

zxcvbn: realistic password strength estimation.
https://tech.dropbox.com/2012/04/
zxcvbn-realistic-password-strength-estimation/.

http://en.wikipedia.org/wiki/Leet
https://www.microsoft.com/security/pc-security/password-checker.aspx
https://www.microsoft.com/security/pc-security/password-checker.aspx
http://websandbox.org
https://support.mozilla.org/en-US/kb/bookmarklets-perform-common-web-page-tasks
https://support.mozilla.org/en-US/kb/bookmarklets-perform-common-web-page-tasks
http://www.openwall.com/john/
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/web-messaging.html
http://www.pts.se/
http://www.pts.se/en-GB/News/Press-releases/2012/A-million-tested-passwords/
http://www.pts.se/en-GB/News/Press-releases/2012/A-million-tested-passwords/
https://telepathwords.research.microsoft.com/
https://nakedsecurity.sophos.com/2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack
https://nakedsecurity.sophos.com/2014/06/23/syrian-electronic-army-uses-taboola-ad-to-hack
-reuters-again/
http://www.sharethis.com/
https://www.taboola.com/
https://testalosenord.pts.se/
http://www.tynt.com/
http://www.cse.chalmers.se/~andrei/SandPass/
http://www.verizonenterprise.com/DBIR/2014/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Node3-textContent
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Node3-textContent
http://www.w3.org/TR/#tr_JavaScript_APIs
http://www.w3.org/TR/WebCryptoAPI/
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/

APPENDIX
A. PERFORMANCE EVALUATION

We evaluated the performance of our reference implemen-
tation by measuring the loading time of the entire web page
and the speedup of a single password check. We use the
PTS password meter as the baseline, and compare it against
a modified version which makes use of SandPass, which we
name the improved version.

A.1 Loading time benchmark

baseline [171.97ms
improved] 177.46ms
nomodules |] 86.99ms
empty [T 18.76ms ‘ ‘
0 50 100 150

Loading time in ms

Figure 9: Measurements of the loading time of the baseline
PTS password meter and one outfitted with SandPass

To measure the effect of SandPass on the loading time of
a webpage using it, we set up the following series of experi-
ments.

We load a webpage into an iframe 1000 times. After each
single load, the page inside the iframe sends a message to the
outside frame using postMessage to indicate that the loading
has finished. When the parent detects this, the next load
starts. By recording the time before and after the 1000 loads,
an average loading time can be calculated.

All pages are loaded locally to eliminate noisy measure-
ments due to possible temporary network problems on the
Internet, and browser caching was disabled.

The experiment is repeated four times for: the original PTS
password meter (“baseline”), the PTS password meter outfit-
ted with SandPass implementing the same functionality as
the PTS password meters (“improved”), the PTS password
meter outfitted with SandPass but without any actual mod-
ules (“nomodules”) and an empty page (“empty”).

The results of these experiments are depicted in Figure @
The “baseline” loading time is 71.97ms + 2.1ms (2.1ms be-
ing the standard deviation), the “improved” loading time is
177.46ms £ 0.9ms, the “nomodules” loading time is 86.99ms
+ 1.0ms and the “empty” loading time is 18.76ms + 0.6ms.

A.2 Micro-Benchmarks

baseline
localhost {1 1.32ms
improved -] 0.66ms
double empty [0.63ms
single empty -] 0.32ms | | | |
0 5 10 15 20
Time in ms
Figure 10: Measurements of the micro-benchmarks compar-
ing the baseline PTS password meter against one improved
with SandPass

] 22.35ms

To measure the speedup gained by SandPass over the base-
line, we performed two series of experiments.

First, we measured the network delay experienced in the
baseline, by sending 1000 requests to the real PTS password
meter using XMLHttpRequests and measuring the average
response time. This experiment is called “baseline”. While
the PTS password meter website might be very responsive
to people in Sweden, results may differ in other parts of the

world. Therefore, we repeated this experiment and used lo-
calhost as the target to get the fastest possible average re-
sponse time possible for a password meter implemented as
the PTS password meter. This experiment is called “local-
host”.

Secondly, we performed 10000 password evaluations using
SandPass and again measured the average delay. We set up
three variations of this experiment. The “improved” variation
uses SandPass together with two modules, which together im-
plement the same functionality as the PTS password meter.
The “double empty” variation has two empty modules, mean-
ing no measurements are performed on the given password.
Finally, the “single empty” variation has just a single empty
module.

The average response times measured in these experiments
are shown in Figure The “baseline” response is 22.35ms
+ 0.2ms, the “localhost” response is 1.32ms + 0.1ms, the
“improved” response is 0.66ms & 0.03ms, the “double empty”
response is 0.63ms 4 0.03ms and the “single empty” response
is 0.32ms + 0.01lms.

A.3 Discussion

Fitting a password meter with SandPass comes at a cost,
but it is acceptable. The performance evaluation of SandPass
clearly shows an improvement.

The PTS case study shows that the loading time increases
by about 106ms for an equivalent client-side only password
meter implementation. This extra loading time is mainly
due to the 53k-words dictionary (622KB) coming with the
CrackLib implementation (in total 672KB), which is more
than 200 times the size of SandPass’ code-base (less than
3KB). By eliminating this heavy implementation from the
benchmarks, the “nomodules” measurement shows only a 21%
increase in loading time. In addition, the loading of SandPass
needs only happen once, and will be cached by the browser
afterwards so that there is no noticeable delay for the end
user.

For both security and performance reasons, it makes sense
to have a client-side password meter instead of a server-side
password meter. Comparing the numbers in the PTS case
study, the delay caused by the server-side password meter is
34 times larger than the delay experienced trough SandPass.
However, our measurements also show that this delay is still
2.5 times larger even when the server-side password meter is
on localhost, the best possible location. In essence, Crack-
Lib is based on string modifications and dictionary lookups
which is efficiently implemented for common JavaScript en-
gines. As a result, checking a single password using CrackLib
with SandPass takes on average only 0.66ms, which allows
for checking more than 1500 passwords every second, which
is more than adequate for an interactive password meter.

	Introduction
	State of the Art
	Stand-alone password meters
	Stand-alone password generators
	Password meters on registration pages
	Discussion

	Client-side framework
	Framework
	Reference implementation

	Case Study
	Evaluation
	Security evaluation
	Performance evaluation

	Related work
	Conclusion
	References
	Performance evaluation
	Loading time benchmark
	Micro-Benchmarks
	Discussion

