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Abstract

With the constant migration of applications from the desktop to
the web, power users have found ways of enhancing web applications,
at the client-side, according to their needs.

In this paper, we investigate this phenomenon by focusing on
the popular Greasemonkey extension which enables users to write
scripts that arbitrarily change the content of any page, allowing
them to remove unwanted features from web applications, or add
additional, desired features to them. The creation of script markets,
on which these scripts are often shared, extends the standard web
security model with two new actors, introducing newly identified
types of vulnerabilities.

We describe the architecture of Greasemonkey and perform a
large-scale analysis of the most popular, community-driven, script
market for Greasemonkey. Through our analysis, we discover not
only dozens of malicious scripts waiting to be installed by users, but
thousands of benign scripts with vulnerabilities that could be abused
by attackers. In 58 cases, the vulnerabilities are so severe, that they
can be used to bypass the Same-Origin Policy of the user’s browser
and steal sensitive user-data from all sites.

We have discovered several of these severely vulnerable scripts,
with over a million installations, and created a proof-of-concept ex-
ploit that successfully launches a novel “Man-in-the-browser” attack
against an installed vulnerable script with an installation base of 1.2
million users.
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ABSTRACT

With the constant migration of applications from the desk-
top to the web, power users have found ways of enhancing
web applications, at the client-side, according to their needs.

In this paper, we investigate this phenomenon by focusing
on the popular Greasemonkey extension which enables users
to write scripts that arbitrarily change the content of any
page, allowing them to remove unwanted features from web
applications, or add additional, desired features to them.
The creation of script markets, on which these scripts are
often shared, extends the standard web security model with
two new actors, introducing newly identified types of vul-
nerabilities.

We describe the architecture of Greasemonkey and per-
form a large-scale analysis of the most popular, community-
driven, script market for Greasemonkey. Through our anal-
ysis, we discover not only dozens of malicious scripts wait-
ing to be installed by users, but thousands of benign scripts
with vulnerabilities that could be abused by attackers. In
58 cases, the vulnerabilities are so severe, that they can be
used to bypass the Same-Origin Policy of the user’s browser
and steal sensitive user-data from all sites.

We have discovered several of these severely vulnerable
scripts, with over a million installations, and created a proof-
of-concept exploit that successfully launches a novel “Man-
in-the-browser” attack against an installed vulnerable script
with an installation base of 1.2 million users.

1. INTRODUCTION

The web has evolved from a collection of purely static
pages to entire web applications, making the browser the
medium of choice for delivering new software and services.
For many users, the desktop appears to do little more than
house their browser and manage their Internet connection.
With this migration, many power users who used to cus-
tomize their operating system and install their applications
of choice, now feel the desire to customize the applications
inside their browser, in a way that fits their needs. These
customizations usually result in an enhanced form of brows-
ing the web, which is called “augmented browsing”.

Probably the most well-known instance of augmented brows-

ing software is the Greasemonkey [11] browser extension,
which, at the time of this writing, ranks fifth in the list of
most popular Firefox extensions [26]. Greasemonkey users
can write user scripts, i.e., small JavaScript programs, that
manipulate loaded webpages on the client-side in any way
desired. User scripts can, among others, hide ads, change
the content layout of a page, and make cross-origin HTTP

requests to create client-side mashups. In contrast with typ-
ical browser extensions, user scripts are comprised of a sin-
gle JavaScript file and are not packaged in any way, making
them easy to inspect and modify. Overall, Greasemonkey
and user scripts tend to a different audience than the neatly-
packaged browser extensions available on the traditional ex-
tension markets.

Due to the popularity of Greasemonkey and the large
number of user scripts created for it, the Greasemonkey de-
velopers created a community website on which members
can exchange user scripts: a community-driven, script mar-
ket known as userscripts.org [28].

The creation of a script market brings along some unique
security issues, because it extends the standard web attacker
model with new actors. In the regular model, a website is
visited by a client and an attacker can either attack the
website by exploiting server-side vulnerabilities, or the vis-
itor through client-side vulnerabilities, like XSS or CSRF.
In the augmented browsing scenario, however, the model
is extended with the inclusion of a user script in the visi-
tor’s browser, a script market with user scripts, and a script
author creating and sharing user scripts through the script
market.

In this paper, we perform an in-depth analysis of this ex-
tended script ecosystem. First, we consider the script author
as a malicious actor, having the ability to create user scripts
with malicious functionality, and upload them to the script
market where they may be downloaded and installed by vic-
tim users. We report on the prevalence of malicious scripts,
the discovered malice, and whether this malice was identified
by the userscripts.org community.

Next, we briefly look at specific scenarios allowing tar-
geted attacks against script users without their knowledge,
either at script installation time or any other time during
the lifetime of a script within their augmented browser.

Last, we shift our focus to the possibility of conducting at-
tacks on poorly coded user scripts. We find many instances
of benign scripts whose authors, even though they had no
bad intentions, unwillingly introduced vulnerabilities which
could be used to attack websites that are otherwise secure.
Using straightforward static-analysis techniques, we identify
more than 100 user scripts, with millions of installations,
vulnerable to DOM-based XSS. We also show that a certain
type of user script vulnerability can be abused to launch at-
tacks even against the Greasemonkey engine itself, leading
to powerful global XSS attacks, where an attacker can steal
a user’s data from all sites.

Our main contributions are:



e We evaluate the Greasemonkey browser extension, fo-
cusing on the functionality with negative security con-
sequences.

e We analyze the most popular, community-driven script
market for Greasemonkey and describe the difficulties
of relying on the community to define and identify ma-
liciousness.

e We demonstrate novel attacks that take advantage of
benign Greasemonkey scripts to attack, otherwise se-
cure, websites.

2. GREASEMONKEY

In this section, we describe the Greasemonkey engine, its
uses, and the structure of Greasemonkey scripts. Finally we
examine how Greasemonkey affects the security and isola-
tion of scripts in the browser.

2.1 Greasemonkey engine

Greasemonkey is a popular browser add-on for augmented
browsing. Using Greasemonkey, users can, on the client
side, modify the appearance and functionality of any page
of the web. This is done by JavaScript programs that are
injected in arbitrary webpages and have access to privileged
functionality, not available to normal JavaScript programs.
Through these Greasemonkey scripts and with the help of
the browser’s DOM, users can arbitrarily edit a webpage, in-
cluding the removal of content, e.g., ads, or the addition of
new content, e.g., adding missing functionality to a web ap-
plication, or creating mashups using content from multiple
domains.

While Greasemonkey was originally a Firefox-specific ex-
tension, there are also ports of the extension to other browsers,
like Tampermonkey for Google Chrome. According to the
extension markets of Mozilla Firefox and Google Chrome, at
the time of this writing, there are almost three million users
who have the Greasemonkey and Tampermonkey extensions
installed. Moreover, due to the popularity of the extension,
a subset of the Greasemonkey functionality is, by default,
supported in many modern browsers, where Greasemonkey
scripts are treated as a special case of browser extensions.

In general, Greasemonkey scripts can be considered light-
weight browser extensions. Users can write their own scripts,
or find scripts written by other users, either dispersed on
the web, or concentrated on community-driven script mar-
kets, much like the aforementioned popular extension stores.
Greasemonkey scripts are different from other browser ex-
tensions, in that they target a different crowd of users. As
further explained in the next section, Greasemonkey scripts
are single-file JavaScript programs, without Manifest files
and directory structures. Their lightweight nature allows
them to be much more website-specific than normal browser
extensions, e.g., disabling ads by hiding one specific HTML
object on the user’s favorite website, or game helping scripts
for specific games on popular social networks. In addition,
unlike browser extensions, the JavaScript nature of each
script is not hidden in archive files. Instead, users can in-
spect and edit the code of their installed scripts from within
the Greasemonkey extension.

Listing 1 Example of a Greasemonkey user script

// ==UserScript==
// @name
// @description

Hello World
Description of this script

// @namespace http://author.com/gmscripts
// @include http://example.com/*

// @include http://*.example.com/*

// @exclude http://login.example.com/*
// @require http://author.com/1lib.js

// @updateURL http://author.com/hw.meta. js

// @downloadURL https://author.com/hw.user.js
// G@grant GM_xmlhttpRequest
// ==/UserScript==

alert ("Hello World");
GM_xmlhttpRequest ({
method: "GET",
url: "http://www.shopping.com/",
onload: function(response) {
alert (response.responseText);
}
3D g

2.2 Greasemonkey scripts

In this section, we demonstrate the basic structure and
syntax of Greasemonkey user scripts, and the necessary con-
cepts for the comprehension of the rest of the paper.

2.2.1 Structure of scripts

Listing 1 shows a simple example of a user script. Notice
that before the actual functionality of the script, there is
script-specific meta-data in the form of comments enclosed
by // ==UserScript== and // ==/UserScript==

The Greasemonkey engine will recognize the comments
containing @ signs and read-in the appropriate values. The
@name and @description directives specify the title of a
script and a user-readable description of what the script
does. The @namespace directive allows for the separation
of scripts that have the same filename. The @include and
@exclude directives allow the script authors to specify the
domains and webpages that their script should execute on.
The @require directive allows the script author to include
external JavaScript code and use it from the user script.
Both QupdateURL and @downloadURL are used during the
automatic user script update process. The @grant direc-
tive specifies that the listed function should be added to the
Greasemonkey sandbox.

The actual code of the user script starts where the meta-
data comment block ends. In our example, the first call
is to the standard alert function provided to JavaScript
from the Browser Object Model and used to display mes-
sage boxes to the user. The second function call, however,
is towards a special Greasemonkey-specific function. Grease-
monkey API functions have the GM_ prefix and are typically
able to do operations not allowed by standard JavaScript
code. In this case, the script performs a cross-domain HTTP
request to http://www.shopping.com, an operation that is
otherwise forbidden by the Same Origin Policy (SOP), the
browser’s default security policy, for security and privacy
reasons. Other Greasemonkey functions allow a user script
to, among others, store and retrieve persistent data, access
script-specific resources and register menu commands in the
browser.
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This is a Greasemonkey user script. Click install to start using it.

Hello World

Description of this script

runs on:
http:/7*.example.com/*

does not run on:
http://login.example.coms*

Malicious scripts can violate your privacy and act on your behalf
without your knowledge.

You should only install scripts from sources that
you trust.

Show Script Source
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Figure 1: Greasemonkey Script Installation Dialog

Figure 1 shows the Greasemonkey dialog that is displayed
to the user trying to install our example user script. Notice
that at the bottom of the dialog, the user is warned that
the scripts can violate the user’s security and privacy, and
that the user is supposed to install scripts from only trusted
sources.

2.2.2  Important meta-data

In this section, we expand upon some of the aforemen-
tioned Greasemonkey directives since these have security
and privacy consequences.

@include. As described earlier, Greasemonkey consults the

@include directive to determine which pages a user script
should be injected in. Greasemonkey uses regular expres-
sions to match the @include header against the entire URL,
allowing a lot of flexibility. The script author might for in-
stance add @include http*://*.example.com to allow the
script to run on both HTTP and HTTPS versions of the
example.com sub-domains, and the script author is even al-
lowed to specify @include * to run the script on any web-
site. If no @include directive is present, Greasemonkey will
default to @include * for that user script.

@require. Greasemonkey allows script authors to base their

scripts on external JavaScript libraries through the @re-
quire directive in the script header. When a script with
a @require directive is installed, the URL argument of this
header is used to download the specified external JavaScript
library and store it alongside the installed script. At run-
time, the local copy of the external JavaScript library is
executed together with the script code.

Consider the user script listed in Listing 1. During the
installation of this script, Greasemonkey will find the @re-
quire header pointing to http://author.com/1lib. js, down-
load the referenced library script and store it alongside this
user script for execution at runtime.

@updateURL and @downloadURL. Greasemonkey has built-in
functionality to automatically install updates for installed
user scripts, when it detects that an update is available. To
make use of this feature, script authors can specify the @up-
dateURL and @downloadURL directives, as shown in Listing 1.

The @updateURL header is used to specify where the latest

meta-data for a user script can be found. If this meta-data
reveals the availability of a new version of a user script, the
update process is triggered. The @downloadURL header lists
the URL from which the updated script is to be downloaded,
once the update process has been triggered.

If GupdateURL or @downloadURL are not found in the script
header, Greasemonkey automatically infers them from the
location from which the script was installed. Both @upda-
teURL and @downloadURL can use the HTTP scheme, but
only when @downloadURL uses an HTTPS scheme, will the
update be automatic.

Q@grant. Based on the least-privilege principle, powerful func-

tions like the ones in the Greasemonkey API should be avail-
able to user scripts, only if they are absolutely necessary.
Recognizing the merits of this principle, Greasemonkey al-
lows script authors to specify which functions of the Grease-
monkey API should be added to the Greasemonkey sandbox,
using the @grant header.

Consider again the user script listed in Listing 1, display-
ing the usage of this @grant header to request access to the
GM_xmlhttpRequest function. The special directive @grant
none is used to indicate that the script uses no Greasemon-
key API functions at all, and thus none should be added
to the sandbox. In the absence of @grant headers, Grease-
monkey will attempt to infer the necessary API functions
by analyzing the user script.

2.3 Attack surface

At this point, it should be evident that the extra func-
tionality of user scripts, unfortunately comes with room for
extra vulnerabilities. We consider three different attack sce-
narios: a) malicious user scripts abusing the pages in which
they are injected, b) attackers abusing benign but vulnera-
ble user scripts to attack webpages and, ¢) malicious pages
trying to abuse the Greasemonkey engine and gain access to
privileged functions.

In the first scenario, a victim installs a user script that ad-
vertises some functionality, e.g., automatically hiding ads on
all webpages. This script may be a trojan horse which, next
to hiding ads, steals private data from pages, the user’s cook-
ies, or even acts as a keylogger and captures all of the user’s
keystrokes. Since JavaScript allows for extensive minifica-
tion and obfuscation of code, identifying malice by simply
inspecting the source code of a script can be an arduous
and technically challenging procedure, which the majority
of users will most likely not be able to perform.

In the second scenario, an attacker can take advantage of
vulnerabilities introduced by user scripts on pages that oth-
erwise would have no exploitable vulnerabilities, e.g., the
exploitation of a DOM-based XSS vulnerability on a web-
mail application introduced by the added functionality of a
Greasemonkey user script.

In the third scenario, an attacker can take advantage of
user script vulnerabilities, not just to inject code in a be-
nign page, but to inject code in Greasemonkey’s sandbox.
Greasemonkey makes use of sandboxing to protect the priv-
ileged GM_ functions from possibly malicious scripts running
on a website. Despite, however, of this sandbox and ad-
ditional, stack-inspecting mechanisms of Greasemonkey, a
poorly-written user script can still introduce unsafe code in
the sandboxed environment, e.g., by eval-ing a string from a
malicious page without performing the proper sanity checks.



| |

400k | | —e— forum posts

) —a— scripts
< 300k 7 forum topics
2 200k |
o

100k | e

0" ‘

T T T T T T
2007 2008 2009 2010 2011 2012 2013
year

Figure 2: Historical data of userscripts.org on user
scripts, forum topics and forum posts

When this happens, a malicious script can, for instance, get
access to the GM_xmlhttpRequest function of Greasemonkey
which allows the attacker to send arbitrary requests towards
any website, with the user’s cookies embedded in them, and
read the corresponding responses.

3. COMMUNITY-DRIVEN
SCRIPT MARKETS

An augmented browser extension, such as Greasemonkey,
allows power users to create user scripts and use them in
their daily browsing. Once written, a user script can be use-
ful and generic enough, to be of value to other users. Script
markets facilitate the sharing of such scripts by providing
script authors with a disseminating platform and a feedback
mechanism, and consumers of scripts with comments and
ratings about the quality and utility of a particular script.

In this section, we discuss userscripts.org, the official
script market for Greasemonkey scripts, and describe some
general features and historical information. In addition, we
also report on the building and categorizing of a dataset of
user scripts and meta-data from userscripts.org that will
be used throughout the rest of this paper.

3.1 Userscripts.org

Userscripts.org is an online community established in 2005,
which hosts community-provided Greasemonkey scripts and
is the official script market associated with Greasemonkey.

The website allows members to upload, update and delete
their user scripts. A forum hosted on the website allows the
community members to communicate amongst themselves,
discussing ideas and user scripts. User scripts can also be
reviewed or flagged for further review by flagging them with
issues. There are 5 categories of issues, namely “Broken”,
“Copy”, “Harmful”, “Spam” and “Vague”. Scripts are char-
acterized as “Vague” when the script authors do not ade-
quately describe the purpose of their extensions. Members
can vote on whether a flagged issue is present or not, and
leave comments to support their vote.

The website also tracks several pieces of meta-data for
each user script, among which, is a counter indicating how
many times a user script was downloaded and installed. At
the time of writing, the website hosts more than 114,000
Greasemonkey scripts written by more than 90,000 regis-
tered users. The websites forum contains about 400,000 fo-
rum posts spanning more than 82,000 forum topics.

Figure 2 plots data based on historical records [14] indi-
cating the number of user scripts hosted by the community,
the number of forum topics and forum posts since 2007.

This data shows that the website has grown steadily since
its creation. On average, the website has grown by about
48 user scripts, 37 forum topics and 179 forum posts per
day, indicating that the Greasemonkey engine and its asso-
ciated scriptmarket are active, despite the growth of more
traditional browser extension markets.

3.2 Gathered dataset and statistics

To gain better insight into the user scripts provided by
userscripts.org, we retrieved a total of 86,358 user scripts
together with their accompanying meta-data.
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Figure 3: From the 37,893 user scripts for which
the @include domain could be analyzed, 29.9% was
designed for the Alexa top 3

The authors of the user scripts in this dataset designed
their scripts with a specific environment and purpose in
mind. By analyzing the meta-data in each user script, we
aimed to discover which websites these user scripts are meant
to run on, as well as the category of each discovered website.

First, we correlated the meta-data of the 37,893 user scripts
in our dataset that are designed for the Alexa [2] top 10,000,
“high-profile”, websites.

Figure 3 shows the fraction of these “high-profile” user
scripts related to the top Alexa domains they target. 11,313
(29.9%) of them are designed for the Alexa top 3 (Facebook,
Google and YouTube), while 25,958 (68.5%) are designed for
domains in the Alexa top 1,000.

Category count

Social Networking 12,238  32.3%
Search Engines / Portals 4,570 12.1%
Games 4,271 11.3%
Blogs / Web Communications | 2,992 7.9%
Computers / Internet 2,396 6.3%
Total 26,467 69.8%

Table 1: Top five categories to which the “high-
profile” user scripts belong, according to the domain
for which they were designed.

Next, we used data from Trendmicro SiteSafety [27] to
split the user scripts into categories, according to the domain
they are designed for. From the 37,893 “high-profile” user
scripts in our dataset, 69.8% belong to the five categories
shown in Table 1.

The data gathered from our dataset indicates that most
user scripts are designed for “high-profile” websites aimed
at entertaining and informing users, such as social network-
ing sites, portals, games and blogs. These results show that



Listing 2 This Greasemonkey script can be both malicious
or non-malicious, depending on whether the user is aware of
its actions

var enemies = ["Cylon"];
for (e in enemies)
game .destroyColony (enemies [e]) ;

many users are willing to install Greasemonkey scripts that
operate on websites with valuable private data, like face-
book.com. As we discuss in later sections, this willingness
to trust user scripts can be abused by malicious script au-
thors, in order to gain access to a user’s private user data
and perform actions on the user’s behalf.

4. MALWARE ASSESSMENT

Greasemonkey scripts are more powerful than traditional
JavaScript programs, because they can manipulate and re-
trieve private data in a user’s browser without SOP restric-
tions. Consequently, such scripts can be an attractive infec-
tion vector for malware authors, who can create malicious
user scripts and trick users into installing them.

In this section, we discuss malware in Greasemonkey user
scripts, why it is difficult to automate malware detection in
user scripts, and how the userscripts.org community is
currently attempting to deal with malware. We also ana-
lyze the subset of user scripts on userscripts.org that was
labelled “harmful” by the community review process and pro-
vide some observations about this malware to improve the
malware detection process.

4.1 Defining and detecting malware in user
scripts

Automatic malware detection is certainly a desirable mech-
anism that could, in theory, be used to protect Greasemon-
key users from malicious user scripts, by screening new or
updated user scripts, and marking them as malicious. Be-
fore this can happen, however, there first needs to be a clear
definition of what exactly constitutes a malicious user script.
A malicious script can not just be defined as the presence
of malicious code in the user script. The context and meta-
data also need to be considered.

For instance, consider Listing 2, a code fragment inspired
by an existing Greasemonkey script, containing a game helper,
i.e., a script that assists a user while playing a specific game
and gives him a competitive advantage over other users.
When executed in a certain game, the code fragment de-
stroys all colonies of type “Cylon”.

If “Cylon” is an opposing team in the game, then the user
would probably consider this script harmless and argue that
the user script works as intended or advertised. If, on the
other hand, the user’s team name is “Cylon”, then the script
would sabotage her game and she would consider the script
malicious. Without this additional contextual information,
a malware detector would have to resort to the semantics of
the script alone, and it would be unclear whether this code
fragment should be classified as malicious or harmless.

To avoid such occasions, each script has a description field
in its meta-data, where the script author can describe the
purpose of the script and thus provide this additional contex-
tual information. A malicious script could then be defined

as a script whose semantics do not match its description and
is performing some action that the user finds undesirable.
Unfortunately, verifying whether a user script’s semantics
match its description, is a task requiring non-trivial natu-
ral language processing, which in turn, relies on the user’s
verbosity and writing style. In addition, a user script’s se-
mantics are context-specific, and requires a deeper under-
standing of the web-application it was designed for. As such,
automating this malware detection process appears to be a
difficult task, which is likely not to produce good results.
Based also on our experience reverse-engineering Grease-
monkey user scripts, we believe that the task of identifying
malice should, at the moment, be left to human reviewers.

4.2 Userscripts.org issue reporting

The userscripts.org community website has a community-
based, manual reviewing process to detect malicious user
scripts. When a malicious user script is detected, the user
can flag it as “harmful” and, optionally, explain her vote in
the comment section.

In our dataset of 86,358 scripts, 626 (0.7%) are marked
as “harmful” by at least one user of the userscripts.org
community. Of those 626 scripts, 592 have at least as many
votes in favor of “harmful” as votes against it. Due to the in-
creased issue-related activity around these scripts, we focus
on them for the rest of this section.

Not malicious ] 466

Steals credentials {170
Includes 3¢ party JS -1 25
Redirects {1 22

Misbehaves {1 9 | | | |

0 100 200 300 400 500

Amount of “harmful” scripts

Figure 4: Categories of malware found in the 592
scripts labelled as “harmful” in the userscripts.org
dataset. Almost 80% is harmless.

To determine the quality of this manual review process, we
performed a manual analysis of these scripts to determine
what users regard as “harmful”. From the 592 “harmful”
scripts, we could not find any trace of malice in 466 (78.7%)
of them. For our purposes, we defined malice as the attempt
to steal private data from a user, or trick the user into per-
forming an action with potential monetary benefits for the
attacker. We will refer to the remaining 126 scripts that do
contain malware, as the verified harmful dataset.

A breakdown of the entire harmful dataset according to
the reason the scripts were flagged, is shown in Figure 4.
Ignoring, for the time being, the scripts that we discovered to
be not malicious, the largest fraction with 70 scripts contains
malware designed to steal credentials in some form, from the
user. This category contains scripts that steal cookies (29
scripts), steal username and password directly (22), steal
username and password through phishing (14) and scripts
that log and leak keystrokes (5).

The next largest fraction with 25 scripts include third
party JavaScript into a loaded page. From the URL alone,
it is not always clear what type of malware these scripts
contain, if any. The included code could be dynamically
generated and used to target specific users. We further in-
vestigate the possibility of targeted attacks in Section 5.



Twenty-two scripts simply redirect the user to another
website, with the possible intent to lure the user into a drive-
by-download scenario and install malware that way. Only
five of these “redirect” scripts were reported by users to be
the cause of a drive-by-download attack.

Finally, there remain nine scripts which simply “misbe-
have”, and can not be summarized in the previous categories.
Their behavior is best described as making fraudulent trans-
actions: sending spam on social networks, destroying online
game assets, making a PayPal donation, ... etc.

Shifting our attention to the 466 benign scripts that were
mislabeled as malicious, the main reasons for this labeling
were “bad practices”, e.g. providing custom update func-
tionality instead of using the proper built-in functionality
of Greasemonkey, and copied user scripts being mislabeled
as “Harmful” instead of “Copy”. For other scripts the issue
reporter claims, among others, that the user script attracts
copyright violations, destroys online communities, and even
censors freedom of speech. These reasons indicate that the
concept of “harmful” is not always clear to the members of
the community, and that there should be a clearer definition.

In addition, we found some scripts that at one point in-
cluded malware, but had the malware removed from the lat-
est revision by its author. Such scripts, although now clean,
still carry the “harmful” label because the labelling is not
always reset on new revisions.

4.3 Malware observations

As mentioned earlier, a completely automatic malware-
detection mechanism is not likely to produce good results
for Greasemonkey scripts. However, from our manual re-
view of user scripts in the verified harmful dataset, we ob-
served certain patterns that kept on reoccurring in many
of the malicious scripts. From these patterns, we derived
two detection methods that could assist human reviewers in
prioritizing possibly malicious scripts, in the review process.

Malware insertion. During our analysis we observed that
malware authors often copy an existing popular script and
then add some malicious code, without modifying the orig-
inal, surrounding code. The resubmitted malicious script is
likely to appear during the search for scripts offering a spe-
cific functionality and installed by victim users, instead of
the original script.

To determine the feasibility of detecting malware by iden-
tifying similarities between scripts, we set up an experiment
to determine which scripts are copies of other scripts on
userscripts.org. Comparing each script with every other
script is a time-consuming process of complexity O(n2). There-
fore, we limited the scope of our search to scripts of approx-
imately the same size. For example, the size of the Abstract
Syntaz Tree (AST) of the largest piece of malware found
during our manual analysis was 5,656 bytes. We doubled
this amount and compared each script in our dataset to all
older scripts with a maximum of 10KB size difference in the
AST. This size-filter reduces the amount of comparisons by
about 90%, from 3.7 billion to about 400 million.

Our comparison technique operates as follows: we con-
sider that code is only inserted in one specific location in
the script, and calculate what fraction of the new script is
derived from an ancestor script.

Figure 5 shows the cumulative percentage of scripts in the
full and verified harmful datasets, ordered by their similarity

100% ‘
o | —— full dataset |-~ ‘ )
N 80% —— verified harmful Y |
2 /
% 60% | : ,// L
g 0% / -
20% B D0 X
0% *”T’”"//J/ T —
23% 40% 60% 80% 100%
Cumulative fraction of dataset
Figure 5: Cumulative amount of scripts in our

datasets that are similar to older scripts of the full
dataset. Notice that the verified harmful dataset
contains more scripts with higher similarity to other
scripts, than the full dataset

with older scripts. For the full dataset (blue line), we can
see that almost 75% of the scripts have less than 30% in
common with the other scripts.

Comparing this to the similarities of the verified harm-
ful dataset (red line), we can clearly see that the malicious
scripts are almost always “above” the full dataset, indicat-
ing a consistently higher similarity rating for most scripts in
this dataset. For instance, we can see that 80% of the full
dataset has a similarity rating of about 45%, while the veri-
fied harmful dataset has a similarity rating of about 90% for
the same fraction of the dataset. Thus, the similarity of a
new script with existing ones can be used to guide a human
reviewer towards malicious scripts. Our findings are in line
with the findings of Kapravelos et al. [15], who notice that
authors of traditional JavaScript malware try to evade de-
tection by copying popular JavaScript libraries (like jQuery)
and injecting them with malicious code.

Malware reuse. In addition to copying popular user scripts,
we also observed that malware authors occasionally recycle
malware fragments. Motivated by this observation, we ran
the following experiment to uncover additional text-strings
that are indicative of malware. From the set of all veri-
fied harmful scripts, we extracted all strings of length ten or
more, comprised of alphanumeric characters plus ¢.’, ‘-> and
‘_’. We then searched for these strings in the full dataset.

Text-string | total harmful

voxDve.index0f 7 6 (85.7%)
voxDve.substr 7 6 (85.7%)
xVDs.iterateNext 7 6 (85.7%)
eleNew.nextSibling 23 20 (87.0%)
eleNew.parentNode.insertBefore 23 20 (87.0%)

Table 2: Five text-strings appearing in ten or more
scripts, of which at least 50%, but less than 100%
are verified harmful

From the results of this experiment, we only retained those
strings which occur in ten or more scripts, of which at least
half are verified harmful, yielding a total of 18 strings. For
brevity, we only show five of those in Table 2.

The string eleNew.parentNode.insertBefore was found
in 20 scripts in the “harmful” dataset all of which were as-



sociated with a malicious cookie-grabber. There are, how-
ever, 23 scripts in the full dataset that contain this specific
string. The extra three also contain the malware but were
not flagged by the community.

This experiment indicates the value of a simple text-search
for the community’s review process. As we have shown, it is
straightforward to extract indicative strings from a base set
with known malware. Since a text-search on new scripts for
these text-strings is equally simple, this detection method is
very effective.

S. TARGETED ATTACKS

In Section 4 we considered that a malicious script author
can add malware to a user script. This method has some
drawbacks from the malicious author’s perspective. The
main one is that the malware-containing script has to be
uploaded to the script market and is thus available for anal-
ysis by the rest of the community.

Another method of spreading malware, which does not
require exposing the malware to an online community, is by
infecting users during installation of the script, or during
the update process. A malicious script author, using one
of these methods, can effectively infect users with malware
without exposing the malware to an online community and
even allow him to cherrypick which users to infect, leading
to targeted attacks.

In this section, we discuss these targeted attacks during
installation and during the update process In addition, we
measure how many scripts in our dataset are susceptible to
these attacks.

During user script installation. Consider that the author
of the example listed in Listing 1 is malicious and is deter-
mined to target a new user of his user script with malware
by taking advantage of the @require directive.

A review of this user script by the community could show
that the script, by itself, does nothing harmful. To review
the @required JavaScript library, the reviewer would need
to download the library from author.com, whose server-side
code could determine that it is under review and return
harmless code. The review of this downloaded JavaScript
library will then equally indicate it is harmless.

Reassured by the community review, the targeted user
could decide to install the script. During installation of this
script, a request will be sent from the user’s browser towards
author. com, requesting the specified JavaScript library. At
this point, code running on that webserver can again deter-
mine where the request is coming from, e.g. by geo-locating
the IP address or fingerprinting the user’s browser [10], and
reply with custom malware for the targeted user.

Through user script updates. Similarly, the Greasemon-
key update process can be abused by a malicious script au-
thor to infect a targeted user of his user script, with malware.

Consider again the example in Listing 1 where both @up-
dateURL and @downloadURL headers are used. At regular
intervals, Greasemonkey will initiate the update process for
all installed user scripts. If the update request originates
from a targeted user, the server-side can pretend there is
an update available and push malicious code to the Grease-
monkey extension, a fact which will be invisible for any other
user of that user script.

Appearance in the dataset. Although these attacks are
possible, we can not easily detect whether our dataset con-
tains user scripts that covertly install malware during the
installation or update process. Such scripts, after all, would
be specially crafted to resist this kind of review. Never-
theless, we are interested in discovering user scripts in our
dataset which could be used to covertly install malware.

In the full dataset, 10,866 (12.6%) scripts have a valid
@require directive. Of these, 3,264 scripts @require Java-
Script exclusively from userscripts.org, 6,897 download
them exclusively from third-party domains, and 705 use
both. This means that 7,602 scripts (8.8% of the full dataset)
@require JavaScript libraries from third-party domains and
may covertly install malware during the installation process.

The three most popular third-party domains from which
external JavaScript is loaded are googleapis.com (3,738
scripts), sizzlemctwizzle.com (1,339 scripts) and google-
code.com (868 scripts). The most popular user script in
our dataset, which @requires an external JavaScript library
is a Farmville script with over 60 million installations, and
@requires JavaScript from sizzlemctwizzle.com.

Although these domains can be considered trusted due to
their popularity, there are many third-party domains that
only occur a handful of times in an @require directive in the
dataset, indicating that they are most likely tied exclusively
to the script’s author. Such domains can potentially serve
malware covertly.

Shifting our focus to the update mechanism, 1,135 user
scripts provide a valid @updateURL, 516 provide a valid @down~—
loadURL and 481 provide both. As mentioned in Section 2.2,
the remaining 85,188 scripts without either a @QupdateURL or
@downloadURL have the respective URL derived from the lo-
cation from which the script was installed, which in this case
is userscripts.org.

From the 516 scripts that provide a valid @downloadURL,
462 are located in the userscripts.org domain, while 54
point elsewhere. Most of the @ownloadURLs use the HTTPS
scheme (371) while 145 use HTTP. This data shows that
from the 516 scripts with an explicit @downloadURL in our
dataset, 334 point to https://userscripts.org and will
automatically update whenever an update is available. For
all the rest, the Greasemonkey engine will automatically set
the userscripts.org domain as the update domain acces-
sible using the HT'TPS scheme, meaning that for the vast
majority of scripts, updates will be performed silently.

The three most popular third-party domains from which
updates are downloaded, both for HTTP and HTTPS, are

github. com (27 scripts), zanloy. com (4 scripts) and google . com

(3 scripts). The most popular script in our dataset, which
updates from a third-party domain over the HTTPS proto-
col, is an IMDB script with more than 50,000 installations,
updating from https://github.com.

6. ATTACKING WEAK SCRIPTS

In the previous section, we discussed scripts that are ma-
licious by design, giving their authors the ability to harm
those scripts’ users. Because Greasemonkey injects user
scripts into visited webpages, these user scripts unfortu-
nately increase the attack surface of the user. Thus, even if
scripts are not malicious by commission, they may still cause
harm to their users due to vulnerabilities, by omission.

In this section, we discuss two vulnerabilities that occur in
user scripts: DOM-based XSS and overly generic @include



Listing 3 Example script vulnerable to DOM-based XSS

var d = document.createElement ("div");

d.innerHTML = "This page is located at " +
document.location.href;

document .body.appendChild (d);

Listing 4 Resulting div of DOM-based XSS attack

<div>

This page is located at http://example.com/?<
script>alert (1) ;</script>

</div>

directives. Through these vulnerabilities, an attacker can
trick a victim’s browser into executing code on webpages
onto which a user script acts, or even any webpage he wants,
and potentially even gain access to powerful Greasemonkey
APT functions.

6.1 DOM-Based XSS

DOM-Based XSS, is an XSS attack in which a payload is
executed that is somehow stored in the DOM of the victim’s
browser. This is in contrast with reflected or persistent XSS,
where the payload is placed inside the visited website.

Consider the example shown in Listing 3, which appends
a newly created div tag to the loaded webpage and writes
the current page’s location into it. This code fragment con-
tains a DOM-based XSS vulnerability because it allows an
attacker-controlled string to be inserted into the HT'ML page
of the currently loaded website.

If this code fragment is used on http://example.com/,
a victim’s browser visiting http://example.com/?<script>
alert (1) ;</script> would generate the HTML code shown
in Listing 4. The attacker payload, in this case alert(1);
would be executed as JavaScript in the example.com origin.

The DOM-based XSS vulnerability in the previous exam-
ple is restricted to the webpage on which the code in List-
ing 3 is present. Using the same code in a Greasemonkey
script potentially lifts this restriction. The vulnerability will
then be injected into any page on which the Greasemonkey
code is included. An attacker with knowledge of this situ-
ation, has thus a much larger target: every page on which
this Greasemonkey script is executed, becomes vulnerable.

DOM-based XSS analysis setup. To determine whether
any DOM-based XSS vulnerabilities occur in our user scripts

dataset, we screen all scripts using a lightweight static-analysis

method. Using the Parser API [21] in SpiderMonkey [24],
Mozilla’s standalone JavaScript engine, we parsed all scripts
in our dataset and obtained a simplified AST for each one of
them. Using the list of sources and sinks listed in Table 3,
we searched for sources used directly in the argument list of
sinks. As such, all the results reported in the next sections
are lower bounds of vulnerabilities.

Results. The results of our DOM-based XSS analysis on
the full dataset retrieved from userscripts.org, are shown
in Table 4. From the 86,358 scripts in our dataset, our
analysis revealed 1,736 that contain a DOM-based XSS. The

document, document . {baseURI,body,
documentURI,forms,links,location,

Sources: . .
referrer,scripts,title,URL,
URLUnencoded}, window.name

. document .write(z), document .writeln(zx),

Sinks:

eval(x), e.innerHTML = z

Table 3: Sources and sinks used in the lightweight
static analysis performed to look for DOM-based
XSS

majority of scripts are vulnerable through the e.innerHTML
sink (1,654 or 95.3%) and the various sources originating
from the document object (99.7%).

Note that not all sources are under the control of any at-
tacker and might require the ability to place persistent data
onto a website. The four sources that can be influenced
by an attacker are document.cookie, document.location,
document.URL and window.name. From the dataset, 101
scripts are vulnerable to DOM-based XSS involving those
four sources.

The most prominent, vulnerable to DOM-based XSS, user
script that we discovered is the fourth most popular script on
the userscripts.org script market, with almost 40 million
installations. The script is designed for a popular massively
multiplayer online strategy game called Ikariam. We cre-
ated a proof-of-concept exploit where, through the clicking
on a specially-crafted URL, similar to the one used in the
example in the previous section, we could inject JavaScript
in authenticated pages of users.

6.2 Overly generic einclude

As explained in Section 2.2, the @include directive spec-
ifies which webpages a user script is injected in. The @in-
clude directive allows the use of a wildcard, and uses regular
expression matching to test the entire URL of the webpage
being visited.

If the @include wildcard is used in a too generic way,
this can lead to a security problem. For instance, reconsider
the introductory example in Listing 1. In this script, the
directive @include http://*.example.com/* is used. An
attacker might craft the URL http://www.mybank.com/#
x.example.com/abc and trick a user of this script to visit
it. Greasemonkey’s regular expression will then match the
@include directive against this crafted URL and falsely as-
sume that the author of the script wants the script to be
executed on http://www.mybank.com/. The attacker has
caused the script to run on a webpage for which it was not
intended, by abusing the @include wildcard.

@match. The developers of Google Chrome, in their adapta-
tion of the Greasemonkey engine, recognized that the wild-
card * in the @include directive, was not strict enough and
could lead to insecure situations. For this reason, they cre-
ated the @match [7] directive which provides the same func-
tionality as @include, but in a safer way.

Google Chrome’s @match wildcard is context-sensitive and
is applied by splitting a URL into three parts: a scheme,
a host and a path. A * wildcard can occur within each
part, but cannot match anything that violates the borders



document window.name Total
.body | .cookie | .forms | .links | .location | .title | .URL | other
document .write(x) 0 0 0 0 1 1 0 1 0 3
eval(x) 3 2 1 0 0 0 0 73 0 79
e.innerHTML = x 721 4 5 17 83 14 6 800 5 1,654 (*)
Total 724 6 6 17 84 15 6 874 5 1,736 (*)

Table 4: Breakdown of amount of scripts with detected DOM-based XSS vulnerabilities according to the
used sources and sinks. Only those sources and sinks with any results are shown. (*) the totals do not reflect
the sum on each row, but rather the amount of total unique scripts for the given sink

between the parts. For instance, in the directive @match
http://*.example.com/about.html the wildcard is located
in the host part and can only match characters associated
with a host. Unlike with @include, the http://www.mybank
.com/#x.example.com/about.html URL will not be matched,
since / and # are not valid characters for a hostname. Like-
wise, the wildcard in *://www.example.com/ can only match
http or https.

To be compatible with user scripts for Google Chrome,
Greasemonkey adopted the @match directive alongside its
@include directive. In cases where both @include and @match
directives are used, the @include directive is handled first.

@match No @match | Total
@include securely 670 33,775 34,445
@include insecurely 770 39,955 40,725
No @include 884 10,304 11,188
Total 2,324 84,034 86,358

Table 5: @include and @match directive usage, “inse-
curely” means an overly generic @include

Usage of the einclude and ematch directives. Table 5 di-
vides the scripts in our dataset with regard to @include and
@match directives. From the 86,358 scripts in our dataset,
75,170 (87.0%) contain a @include directive, of which 40,725
insecurely with a too generic wildcard. Since scripts without
an explicit @include directive automatically obtain a @in-
clude * directive, this means that 51,913 scripts or 60.1% of
the full dataset can be tricked into executing on a different
domain than the one they were designed for.

Only 2,324 specify a @match directive, of which 1,440 also
specify an @include directive. Of those 1,440, 770 have
insecure @include directives, meaning the @match directive’s
security advantage over a @include, is completely negated.

The most popular script with an unsafe @include direc-
tive is, at the same time, the most popular script on user-
scripts.org, a social networking script with more than 250
million installations. It uses an overly generic wildcard @in-

clude directive of the form @include http://*website.com/*.

6.3 Resulting malicious capabilities

Global XSS. The combination of a DOM-based XSS vul-
nerability, and an overly generic @include directive, results
in a critical vulnerability. Scripts which contain this com-
bination of vulnerabilities allow an attacker to execute ma-
licious code on any webpage that the attacker chooses, by
crafting a specific URL.

From the 1,736 vulnerable scripts revealed from our anal-
ysis to be vulnerable to DOM-based XSS vulnerabilities, 944
(54.3%) also use overly generic @include directives and can
thus be used to perform global XSS attacks.

Privileged XSS. The case of a DOM-based XSS where attacker-

controlled data find its way into an eval(x) sink reveals
an extra security issue because it allows malicious code to
execute inside the Greasemonkey sandbox. As explained
in Section 2.3, malicious websites can leverage such a DOM-
based XSS vulnerability in a user script, to gain access to
the Greasemonkey API.

Consider for instance the example in Listing 1. The ex-
ample script uses GM_xmlhttpRequest to get access to cross-
origin resources from http://www.shopping.com/. This API
function will be present in the sandbox where the user script
executes, because @grant GM_xmlhttpRequest is used to re-
quest it. If this example script also contained a DOM-based
XSS vulnerability with an eval(x) sink, then a malicious
website could trigger this vulnerability, executing code in-
side the Greasemonkey sandbox and get access to the pow-
erful GM_xmlhttpRequest function.

From the 79 scripts that contain a DOM-based XSS with
an eval(x) sink, 60 execute in a sandboxed environment
with access to the Greasemonkey API and can thus leak
that API to a malicious website which may abuse it.

Privileged, global XSS. To aggravate the problem further,
it is possible to combine all three vulnerabilities: a script
with an overly generic @include directive, vulnerable to a
DOM-based XSS attack where attacker-controlled data flow
into eval(x), thereby exposing the Greasemonkey API.

A script such as this can be abused by an attacker by
luring victims to a specially crafted URL, causing attacker-
controlled code to be executed, with access to the power-
ful Greasemonkey API. Since the Greasemonkey API func-
tions are not bound by the Same Origin Policy, an attacker
could then abuse them to steal private data from the victim’s
browser, across all sites. From the 60 scripts we identified
as being vulnerable to a DOM-based XSS with an eval (x)
sink and which also expose the Greasemonkey API, 58 use
an overly generic @include directive.

The most prominent example is a script installed by 1.2
million users, which, even though is meant to run on a gam-
ing site, can be forced to run on any website, due to its overly
generic use of wildcards. Moreover, the script makes inse-
cure use of eval allowing an attacker to execute arbitrary
code in the Greasemonkey sandbox. We created a proof-
of-concept exploit which amounts to a Man-in-the-Browser
attacker, i.e., we can conduct requests towards all websites




(together with the user’s cookies), read the responses, and
inject malicious JavaScript on any domain.

7. RELATED WORK

To the best of our knowledge, this paper is the first one
that tries to shed light on alternative, community-driven,
JavaScript markets. Closely related, however, is research
done in identifying malicious and vulnerable browser exten-
sions from the official extension markets of Mozilla Firefox
and Google Chrome.

Barth et al. [5] criticize the all-permissive Firefox exten-
sion system showing that only three out of 25 investigated
extensions required full system access. The authors pro-
pose an alternative extension architecture that requires ex-
tensions to explicitly ask permission for access to resources
and also compartmentalize the browser so that a vulnerabil-
ity in a “benign-but-buggy” extension does not necessarily
mean arbitrary code execution with the permissions of the
user running the browser process. Guha et al. [12] study the
Google Chrome market and show that a significant fraction
of extensions request more permissions than they require.
The authors set out to create a more fine-grained policy
system to describe access to resources, as well as a statically-
verifiable, platform-independent language for writing exten-
sions which are then automatically compiled to JavaScript
and other platform-dependent code.

Liu et al. [17] remind that next to benign-but-buggy ex-
tensions, malicious extensions pose real threats to the secu-
rity and privacy of users. The authors present some proof-of-
concept extensions that send spam emails, steal bank cre-
dentials, and perform distributed denial-of-service attacks
on demand. As a defense against malicious extensions, the
authors propose the use of micro-privileges, such as in-
ject_script and cross_site in order to further increase
the granularity of Chrome’s fine-grained policy system.

VEX [3] analyzes Firefox extensions, such as Greasemon-
key, for privilege escalation vulnerabilities, but does not an-
alyze the user scripts used by Greasemonkey itself.

While malicious browser extensions are typically written
in JavaScript, malicious JavaScript, today, has a different
connotation, that of code which exploits some vulnerability
in the browser or in one of the browser plugins to eventu-
ally lead to drive-by downloads, i.e., achieve remote code
execution and download arbitrary malicious executables on
the victim’s machine. According to a recent study by Bar-
racuda Labs, the visitors of the 25,000 most popular sites
on the Internet, got exposed to more than 10 million such
exploits, on February of 2012 alone [4]. Due to the great
magnitude of the problem, there has been a significant body
of research in detecting malicious JavaScript, using honey-
pots [20], dynamic analysis of JavaScript code [8, 22, 16, 15],
and hybrid systems [9, 23] which utilize both static and dy-
namic techniques to analyze JavaScript code. Purely static
analysis of JavaScript has met with limited success due to
the large degree of obfuscation that can be achieved in the
JavaScript language. As such, purely static techniques [6]
are best used as lightweight filters which can separate the
“definitely benign” from the “possibly malicious”. The lat-
ter can be used as input in more resource-intensive dynamic
systems while the former can be safely ignored.

The main difference of this type of malicious JavaScript
with the types of malicious Greasemonkey scripts analyzed
in this paper, is that in our case, maliciousness is context-
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specific. Thus malicious Greasemonkey scripts are more
likely to interact in an abusing way with a specific web ap-
plication, rather than trying to trigger a vulnerability in
the browser. As such, they may be only discoverable when
the user is on a specific page of a specific website, making
dynamic detection of context-specific maliciousness signifi-
cantly harder to define as well as detect.

Typical JavaScript sandboxing techniques [19, 25, 29, 1,
13, 18] attempt to isolate malicious code in a controlled en-
vironment and prevent references to powerful functionality
from leaking inside the sandbox. In contrast, Greasemon-
key creates a sandbox with its powerful API inside and at-
tempts to prevent the leakage of references to this API to
the outside. The vulnerabilities exposed in this paper allow
an attacker in some cases to inject malicious code inside the
sandbox, causing a situation similar to the “inverse sandbox”
effect described in [29].

8. CONCLUSION

As more and more applications move from the desktop to
the web, power users turn to augmented-browsing tools, to
personalize their web applications.

In this paper, we analyzed the Greasemonkey browser ex-
tension and the userscripts.org script market, searching
for evidence of malware and vulnerabilities, as well as docu-
menting the ways with which community-driven script mar-
kets deal with malicious scripts. Through this process, we
find that automated malware detection in a script market
is difficult because of the context-sensitive nature of malice,
and that the review process of userscripts.org is ineffec-
tive in 78% of the cases. Next to the discovery of malicious
scripts, we identify ways in which malicious authors can by-
pass the community review process and covertly infect user
script users with malware.

Moreover, we identify and analyze two types of vulnera-
bilities found in user scripts, which could allow an attacker
to use the restricted and powerful Greasemonkey functions
to, among others, bypass the Same Origin Policy, and force
a user script to run on any website.

We found that DOM-based XSS vulnerabilities are present
in 2% of user scripts and that 60.1% of user scripts can be
forced to run on any webpage. Finally, we show how an
attacker can combine many vulnerabilities to launch pow-
erful privileged, global XSS attacks and discover 58 scripts
that are susceptible to this attack. We demonstrate this at-
tack through a proof-of-concept exploit for one of these user
scripts, installed by over a million users, allowing us to steal
their data across all sites.

The purpose of our work is to highlight the inherent dif-
ficulties of securing script markets against malicious actors,
and the possibility of weaponizing benign scripts against
otherwise secure websites.

Responsible disclosure

We are in the process of disclosing these vulnerabilities to
all involved parties.
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