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ABSTRACT
Login webpages are the entry points into sensitive parts of
web applications, dividing between public access to a website
and private, user-specific, access to the website resources. As
such, these entry points must be guarded with great care. A
vast majority of today’s websites relies on text-based user-
name/password pairs for user authentication. While much
prior research has focused on the strengths and weaknesses
of textual passwords, this paper puts a spotlight on the se-
curity of the login webpages themselves. We conduct an
empirical study of the Alexa top 100,000 pages to identify
login pages and scrutinize their security. Our findings show
several widely spread vulnerabilities, such as possibilities for
password leaks to third parties and password eavesdropping
on the network. They also show that only a scarce number
of login pages deploy advanced security measures. Our find-
ings on open-source web frameworks and content manage-
ment systems confirm the lack of support against the login
attacker. To ameliorate the problematic state of the art, we
discuss measures to improve the security of login pages.
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1. INTRODUCTION
Many websites on the Web today allow a visitor to create
an account in order to provide a more personalized browsing
experience.

Login as entry point To make use of their account on
a website, users must authenticate to that website, typi-
cally by means of a login page. This authentication process
separates the user experience in an unauthenticated and au-
thenticated phase. This separation is crucial to the security
and privacy of users and their information, because only the
owner of an account is supposed to possess the correct cre-
dentials for logging in.

A malicious attacker with the ability to steal these creden-
tials can impersonate the user and steal their private infor-
mation, damage their image, cause financial losses or worse.
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Simply put, if the login page is insecure then the rest of the
web application has no chance to be secure.

Attackers The setting of a login webpage demands a care-
ful approach to modeling the attacker, as a combination of
web and network attacker that attempts stealing login cre-
dentials. Hence, we focus on man-in-the-middle network
attackers and third-party resource attackers. We consider
browsers to be built securely on top of secure software li-
braries handling TLS, and also consider the server hosting
the login page to be built equally securely and without vul-
nerabilities. We thus do not consider attacks on the browser
software, such as drive-by-downloads or compromised web
browsers, or attacks on the server software, such as SQL
injection or remote code execution.

The presence of man-in-the-middle attackers on the Web
is realistic, considering the availability of open and publicly
available access points. In similar vein, considering the com-
promise of several trusted CAs [18, 16] in the past, it is not
unrealistic to assume that a more powerful attacker has the
ability to forge TLS certificates.

Nikiforakis et al. [30] point out that JavaScript code is often
included from untrusted locations and that this code may
be used to compromise the webpage in which the code was
included. If a login page uses sensitive third-party resources
such as JavaScript, Flash or even CSS, an attacker may com-
promise the server hosting these resources and compromise
the login page this way. These third-party servers may even
be malicious of their own with the desire to compromise
login pages.

Once the credentials have been stolen, they can be leaked
back to the attacker since browsers can not prevent the at-
tacker from exfiltrating data [39].

Large-scale empirical study We examine how secure lo-
gin pages are on the most popular 100,000 domains accord-
ing to Alexa. The login page for a certain domain is located
by looking for HTML input elements of the“password” type,
by emulating the process in which a human would browse
the website. Once located, we attack1 the login page with
five different attacker models and try to gain access to the
password field. We find that 51,307 or 51.3% of the top
100,000 Alexa domains have a login page and that 32,221 or
62.8% of those login pages can be compromised by the most
basic man-in-the-middle network attacker. Furthermore, we
notice that the success rate of the attackers does not de-
pend on the popularity of the domain, but that it remains
fairly constant between the most popular and least popular
domains of the Alexa top 100,000.

In our study, we are only interested in login pages imple-
menting authentication mechanisms that exchange passwords

1No users or servers were affected by our attack experiments,
see Section 4.1.3.



directly between a browser and a web application. We do not
consider delegated authentication protocols like OAuth [31].

State-of-the-art support and suggested measures We
consider that many web developers may build web sites
based on popular web frameworks such as PHP or ASP.NET,
or content management systems such as Wordpress or Dru-
pal. We investigate the documentation of these web frame-
works and CMSs to determine whether they give advice on
the usage of any security mechanisms that help defend login
pages.

Browser vendors have introduced and standardized several
security mechanisms to combat these types of attackers. Un-
fortunately, we find that they are not widely used to secure
login pages. We formulate recommendations on how these
mechanisms can be combined in order to construct secure
login pages.

Contributions The contributions made in this work are:

• We perform a large-scale empirical study on the Alexa
top 100,000 domains to discover login pages and chart
the usage of web authentication mechanisms. (Sec-
tion 4)
• We perform a large-scale empirical study of the 51,307

previously discovered login pages to determine how
they defend against the login attacker, by performing
actual attacks on the login page to access the password-
field. (Section 4)
• We study popular web frameworks and CMSs to de-

termine what security precautions they advise in order
to fend off attacks from the login attacker. (Section 5)
• Based on our examination of state-of-the-art security

mechanisms implemented in browsers and their effect
in stopping attacks from the login attacker, we formu-
late recommendations on how to build a secure login
page. (Section 6)

2. BUILDING BLOCKS
Researchers and browser implementers developed different
security mechanisms with the goal to mitigate certain at-
tacks or to disable them completely. In this section we dis-
cuss those relevant to our attacker model. The attacker
model itself is introduced in Section 3.

Mixed Content is a W3C standard that demands block-
ing requests over HTTP from within a webpage served over
HTTPS [42]. The goal is to prevent attacks on insecure net-
work connections introduced for example through including
third-party content. Otherwise, this HTTP traffic can be
modified by man-in-the-middle attackers which would ulti-
mately put the main webpage at risk as well. The block-

all-mixed-content (BAMC) CSP directive forces the Mixed
Content mechanism to also block passive content such as im-
ages. Another CSP directive upgrade-insecure-requests [44]
(UIR) automatically upgrades all HTTP requests to HTTPS.

Subresource Integrity (SRI) allows to detect potentially
malicious modifications to resources by specifying the hash
value of a resource. On loading, the hash value of the fetched
resource is then matched against the specified value and an
error is raised if the hash values do not match.

Even though SRI is a W3C candidate recommendation [43],

it is so far implemented only by Firefox, Chrome (incl. mo-
bile version), Opera and the Android browser [10].

HTTP Strict Transport Security (HSTS) forces fu-
ture connections towards a hostname to be performed over
HTTPS only. HSTS is standardized in RFC 6797 [1].

HSTS is enabled through a HTTP header coming with a
server response over HTTPS. An attacker may have the
chance to tamper with the very first connection attempt
to a server, before the server has had the chance to activate
HSTS. Therefore, major browser vendors maintain a HSTS
preload list which is hard coded into the respective browser
implementations [17]. HSTS is enabled by default for each
domain in this list, ensuring that the browser will never
try to connect to them via unencrypted HTTP. The HSTS
preload list is not part of the standard, but is implemented
by all major browser vendors.

HTTP Public Key Pinning (HPKP) is a HTTP header
through which a certificate’s public key can be associated
with a hostname. This trust-on-first-use mechanism tries to
reduce the problem where a certificate authority (CA) issues
certificates for others than the actual domain owner, for ex-
ample after a CA compromise. Such a certificate can then
be used to, for example, launch a man-in-the-middle attack
despite HTTPS. On establishing a HTTPS connection, the
client’s browser verifies the server’s public key against the
pin set during a previous connection and rejects the connec-
tion on mismatch. HPKP was standardized in RFC 7469 [2].

Since HPKP cannot protect clients against attacks on first
connections, major browsers come with a hard coded list
of trusted CAs for a specific domain [29]. This mecha-
nism differs from the actual HPKP in that it pre-pins only
the expected certificate issuing authorities, not the certifi-
cates themselves. We refer to the HPKP preload list as
currently implemented by major browsers as the “indirect”
HPKP preload list.

An alternative version of a HPKP preload list would store
the public key of a host with the hostname, not the public
key of the CA. This practice is called “end-entity pinning”.
Such a preload list would quickly become impractical and
unmaintainable due to its size and maintainability require-
ments, Although not practical, this “direct” HPKP preload
list is more secure because it cuts away the CA middle-man.

We will assume in the rest of this text that a “direct” HPKP
preload list is implemented in the browser .

3. LOGIN ATTACKERS
The overall goal of our attackers is to steal user credentials
from login pages, that is user names and passwords. To this
end, the attacker tries to either passively sniff on network
traffic or to actively inject malicious code into the webpage
which then exfiltrates the desired information. We consider
an attack as successful as soon as malicious code is success-
fully injected since browsers currently do not have reliable
means to prevent data exfiltration [39].

We assume the client as well as the login page server are
benign and that attackers cannot corrupt or control them
through, for example, exploiting an implementation bug in
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Figure 1: Attacker positions when a browser loads the login
page from a server.

the client’s web browser or an injection vulnerability. In
line with related work [30], we consider any server reachable
through a different domain name than the login page server
as a third-party server even though it might actually be
owned by the same person or company, for example different
domains as part of a content delivery network.

We assume that attackers cannot break cryptographic prim-
itives. In particular, communication over HTTPS is consid-
ered to be a secure channel which guarantees confidentiality
and integrity of the transmitted messages. Discovering and
fixing breaches in cryptographic implementations [28, 19, 34,
15] is a research field on its own, outside this paper’s scope.

Based on these assumptions, we consider five different pos-
sible attackers as shown in Figure 1. We refer to this group
of attackers as “login attackers”, where each of the attackers
is a “login attacker”.

Attacker A1 The A1 attacker has the capabilities of an ac-
tive network attacker as defined by Akhawe et al. [3] who can
listen to and tamper with unencrypted traffic between client
and login page server. In particular, A1 can inject mali-
cious code and even disable any mitigation mechanism such
as CSP or HSTS by simply removing the respective HTTP
header. In case of an encrypted connection (HTTPS), if the
client connects with the web server for the first time and
its domain name is not registered with the client browser’s
build-in HSTS preload lists, the attacker can try to strip
TLS to perform a man-in-the-middle attack [26].

Attacker A2 This attacker is almost identical to A1 except
that A2 operates between the client and third-party servers.
An attack by A2 can be prevented on the client side if the
webpage uses SRI checks.

Attacker A3 The A3 attacker comes closest to the gadget
attacker by Akhawe et al. [3] with the difference that we
only consider third-party servers to dispatch malicious con-
tent. The attacker either directly controls the third-party
server or has managed to corrupt a third-party server, open-
ing up for possibilities to serve malicious resources, such as
JavaScript, Flash or CSS files. Because A3 controls a com-
munication endpoint, it is irrelevant if the resource trans-
mission is encrypted or not. A3 attacks can be detected
through SRI checks by the browser.

Attackers A1CA and A2CA Last, we consider a net-
work attacker exactly as A1 and A2, respectively, but with
the additional ability to have access to a certificate author-
ity (CA). This covers for example the realistic scenario of

governmental control or possible CA compromises. In ei-
ther case, A1CA and A2CA can issue valid certificates and
use them, for example, to launch man-in-the-middle attacks
despite HTTPS. Therefore the attack vectors for A1CA and
A2CA are the same as for A1 and A2 respectively, and the
attackers can modify all transmissions. In case the server’s
domain name is also listed in the “direct” HPKP preload list
of the browser, the forged certificate can be detected and
the attack stopped.

4. EMPIRICAL STUDY OF ALEXA
TOP 100,000 DOMAINS

As is common practice in large-scale studies, we performed
an empirical study of the Alexa top2 100,000 domains in
May 2016, to discover login pages and evaluate their level of
security. This section describes the setup and results of this
study. Code and other materials used during the experiment
are available online [11].

4.1 Experiment setup
In general, this experiment consists of two pieces: finding
the login page and then attacking it.

First, the login page for a given domain must be located
because, for an automated tool, it is not always obvious
where it is. Some login pages are on the front page of a
website, while others can only be reached after following
links and interacting with JavaScript menus.

Second, once the login page has been located, we emulate
the different attacker models and attack the login page while
it is visited. The goal of the attack is to steal the password
that a user would enter on the website.

4.1.1 Login page assumptions
Mechanically locating the login page on a domain is a non-
trivial task since they can require navigating the browser
through e.g. JavaScript menu’s and then be displayed in a
foreign language and with custom styling. Because of these
difficulties, we make a few assumptions about the general
form of login pages based on sensible anecdotal observations
and common sense.

First, we assume that webpages are written in HTML and
that users authenticate via the webpage. Second, we assume
that any login page has a password field and that this pass-
word field is an HTML “input” element of type “password”.
Third, if the login form is hidden under some JavaScript
navigation menus, we assume that a user can properly nav-
igate the menu structure in order to display the login form.
Last, we only consider login pages that are hosted on the
same domain, which we call “native” login pages. We do not
consider a domain such as youtube.com or blogger.com to
have their own login pages because they both redirect to the
google.com login page, which is on a different domain.

4.1.2 Locating the login page
In order to find the login page on a given domain, we follow
a couple of steps that we believe a sensible webpage visitor

2Obtained on 2016/03/26



would also follow. The search for a login page stops as soon
as we have found a login page on the given domain. In this
explanation, we will use the example domain example.tld

to which the user wants to authenticate.

First, we visit the most-top level webpage of the domain
using HTTP and HTTPS as if the user had typed it into
the address bar of his browser. In this example, that would
be http://example.tld and https://example.tld. In ad-
dition, we also try the same for www. prefix: http://www-

.example.tld and https://www.example.tld.

Second, we retrieve all links from these four webpages and
look for URLs that could lead to login pages, by filtering the
URLs for login-related keywords in the top 10 most occur-
ring natural languages [45] on the Web.

Third, we consult the search engine Bing and retrieve the do-
main’s 20 most popular URLs by looking for“site:example.tld”,
and visit those URLs to look for a login form.

Fourth, we extract all links from the “Bing URLs” and like
in the second step look for URLs to potential login pages.

Finally, if we still haven’t found a login page, we point a cus-
tom crawler based on jÄk [33], a web crawler using dynamic
analysis of client-side JavaScript to improve coverage of a
web application, to the first working top-level URL in the
domain and let it explore the website for up to 30 minutes
looking for a login page.

Once a login page has been located, some data is gathered
for statistics, as well as any necessary interactions with the
webpage to get to the login form (in case of the jÄk crawler).
This information can be used later to visit the page under
the different attacker model scenarios.

4.1.3 Attacking the login page
Simply analyzing the login page and predicting whether it
is safe based on implemented countermeasures, is not suffi-
cient. Early experiments showed that certain JavaScript or
Flash files related to web analytics were only briefly inserted
in a webpage via JavaScript, and then promptly removed.
This short lifetime of the resource on the webpage makes
it difficult to detect using a passive analysis approach. To
prevent a high false negative count, we opted to assume the
role of an attacker and perform an actual attack on the login
pages instead. Note that we do not attack the web servers
in any way, only the web traffic towards the browser.

The attacks are fully automated for each of the attacker
models and consist of two components: an automated web
browser based on QT5’s QWebView capable of rendering
webpages and executing both JavaScript and Flash, and an
HTTP proxy based on mitmproxy [35] v0.18 which simu-
lated the attacker. To simulate the A1CA and A2CA attack-
ers, we added mitmproxy’s CA certificate to the certificate
store used by the automated browser.

Attackers simulated via an HTTP proxy With the ex-
ception of A3, all attacker models are network-based, which
motivates the use of an HTTP proxy to simulate the at-
tacker. The A3 attacker model can equally be implemented
at the proxy level, even though this attacker has compro-
mised a third-party host instead of the network.

The proxy can inspect all HTTP(S) requests and responses,
but will only modify responses that are in “scope” for a spe-
cific attacker model. For instance, when assuming the role
of the A1 attacker model, the proxy will only consider un-
encrypted requests that target the same domain as the login
page to be in “scope”.

As indicated in Section 2, several major browsers imple-
ment HSTS and HPKP. Unfortunately, our headless browser
based on QT5’s QWebView does not. We opted to build
HSTS and HPKP awareness into the proxy, by interpreting
the respective HTTP headers and acting upon them just like
a normal browser would.

We refrain from using real browsers to perform the large-
scale experiment since they are bulky in comparison with
our headless browser. The advantage of a real browser sup-
porting the latest security countermeasures is outweighed by
the limited deployment of these countermeasures on visited
login pages.

To prevent that the browser is redirected to an out-of-scope
URL while retrieving a resource, we “hijack” the request by
fetching the requested resource directly so that the browser
never sees the redirect chain.

Finally, web servers may activate security measures by set-
ting certain HTTP headers such as CSP, UIR, HSTS or
HPKP. To avoid that these security measures become a
problem in later HTTP requests, our proxy will remove them
from any responses when those responses are in scope of the
assumed attacker model.

Attack and payload On a login page, we consider HTML,
JavaScript, CSS and Flash to be“sensitive”resources. To at-
tack a login page, we therefore attack all sensitive resources
in scope of and observed by a certain attacker model.

In identified HTML, JavaScript and Flash resources, we in-
ject a piece of JavaScript that locates and reports accessible
password fields in any parent- and sub-frames. This search
is executed every second with setInterval().

CSS resources are a special case because they do not contain
any executable code. Unlike with HTML, JavaScript and
Flash resources, stealing the password via a compromised
CSS resource involves a non-trivial scriptless attack [21]. In-
stead of implementing such a scriptless attack, we only at-
tempt to prove that a password field can be attacked using
CSS, by tainting CSS values and checking for their presence
in the rendered web page.

Automated browser visits the login page For a given
domain, we revisit the previously identified login page through
our proxy and replay any required JavaScript events, once
for every attacker model. Each time, we wait up to one
minute, after which any data reported by the attacker’s
JavaScript payload is retrieved and all password fields are
examined for a CSS taint.

4.2 Results
We discovered native login pages on 51,307 or 51.3% of the
top 100,000 Alexa domains. As explained in Section 4.1.1,
keep in mind that we disregard login pages hosted on a dif-
ferent domain, and thus only consider “native” login pages.

Of the 51,307 discovered login pages, 48,547 (94.6%) could



successfully be visited. We noticed that 27,238 (53.1%) login
pages were served over, or eventually redirected to, HTTP
and 21,309 (41.5%) over HTTPS. Of the 21,309 HTTPS lo-
gin pages, 198 had an HTTP form target and would send
the password unencrypted over the network upon submit-
ting the password. In combination with those login pages
served over HTTP, and without the need to perform actual
attacks, we thus found that 27,436 (53.5%) login pages were
already insecure because they either allowed content to be
injected over an unencrypted connection, or they submitted
the password over an unencrypted connection. For 5,761
(11.2%) login pages served over HTTP and 3,899 (7.6%) lo-
gin pages served over HTTPS, we could not determine the
target of the submission form, either because no enclosing
HTML form was found or because the form submission was
handled by JavaScript.

A total of 2,980 domains used HSTS of which 160 used it to
disable HSTS by setting max-age to 0. As far as we could
determine in our study in May 2016, no visited login pages
used HPKP.

Out of 115 login pages that use BAMC, UIR or SRI, 4 use
BAMC, 13 use UIR and 98 use SRI. Interestingly, no login
page combined one of these technologies with another, so
that these sets do not overlap.

HTML JS CSS SWF Total
A1 28,346 24,116 21,021 768 30,945 (60.3%)
A2 176 16,057 4,592 724 16,452 (32.1%)
A3 159 35,759 10,039 984 36,031 (70.2%)
A[1,2] 28,372 27,581 23,245 1,460 32,221 (62.8%)
A[1,2,3] 28,411 40,164 27,868 1,902 42,284 (82.4%)
A1CA 40,054 35,975 32,732 889 43,799 (85.4%)
A2CA 284 28,716 9,890 1,025 29,404 (57.3%)
Total 41,672 43,200 38,666 2,196 45,968 (89.6%)

Table 1: Number of login pages compromised by each at-
tacker model and the resource types they used for the suc-
cessful compromise. A[. . . ] denotes the combination of sev-
eral attacker models. The percentage in the last column is
calculated against the 51,307 domains with discovered login
pages.

Table 1 summarizes the results of attacking the login pages
with each of the attacker models, indicating how many lo-
gin pages were successfully attacked per attacker model and
through which resource type.

In total, the A1, A2, A3, A1CA and A2CA attackers man-
aged to compromise 30,945 (60.3%), 16,452 (32.1%), 36,031
(70.2%), 43,799 (85.4%) and 29,404 (57.3%) login pages re-
spectively. A network attacker able to man-in-the-middle
all of the victim’s traffic, denoted by A[1,2] in Table 1, is
able to compromise 32,221 (62.8%) login pages. The combi-
nation of the classical attackers A1, A2 and A3, denoted by
A[1,2,3], can compromise 42,284 (82.4%) login pages.

For JavaScript resources, it is striking how many domains in-
clude code from google-analytics.com and facebook.net

on their login pages. The A3 attacker managed to compro-
mise 26,016 (50.7%) and 10,483 (20.4%) login pages using
code from these third-party domains respectively. Notewor-
thy is that eight out of top ten domains abused by A3 could
not be attacked by either A2 or A2CA. These eight Google-

owned third-party resource domains all appear on both the
HSTS preload list and the“indirect”HPKP preload list, thus
foiling these network attacks.

For Flash resources, all three attackers had the most success
compromising login pages by injecting into Flash resources
from moatads.com. This domain is listed as serving mal-
ware [41].
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Figure 2: Evolution of the number of login pages (top) and
success rates of the different attacker models (bottom) for
decreasing domain popularity (in sets of 1000)

Figure 2 plots several metrics against the Alexa popular-
ity rank of the domains in our study. In both plots, the
horizontal axis indicates the domains sorted by decreasing
popularity, in sets of 1000, with the most popular domains
on the left-most side.

The top plot shows how many login pages we discovered and
how many of those are served over HTTP. We observe here
that we found more login pages among the more popular
domains, and that login pages on popular domains are more
frequently served over HTTPS.

The bottom plot in Figure 2 depicts the success rate, as a
fraction of the discovered login pages, of the different at-
tacker models against domain rank. The success rates for
A2 and A1CA remain fairly constant and seem to be inde-
pendent of domain rank.

4.3 Discussion
Our study shows that webform-based authentication is a
very common authentication mechanism on the Web, with
51.3% of the top 100,000 domains having a “native” login
page. A good amount of these can be easily compromised
because they are either served over HTTP or submit the
password over HTTP (60.3% of login pages can be compro-
mised by the A1 attacker), or use third-party resources that
can easily be compromised by a network attacker (32.1% of
login pages compromised by the A2 attacker). In addition,
70.2% of login pages include third-party resources on their
login page, placing a lot of trust in these third-party domains
and allowing attacker A3 access to their users’ passwords.

Powerful attackers with access to a CA can compromise a
lot more login pages, 85.4% of login pages for A1CA and
57.3% for A2CA. The idea of attackers with these capabil-
ities may seem outrageous, but it is realistic, as discussed
in Section 1. Browser vendors are implementing defensive
measures to protect against exactly this type of attacker.
Good examples for their effectiveness are the third-party
resources served by Google servers. Not only are these re-
sources served over HTTPS, but the hosting servers employ



both HSTS and HPKP and preload this information in the
most popular web browsers. With these measures, the A1,
A2, A1CA and A2CA attackers are effectively stopped.

Using third-party resources still requires a leap of faith,
trusting that the organization hosting the resources does not
turn malicious and starts serving malware that is then in-
cluded in a login page. By using SRI, it can be ensured that
a login page will not be compromised even if a third-party
resource server becomes malicious. This defensive measure
is already used by 98 login pages.

The data from this study shows that a lot of login pages are
insecure, despite the existence of defensive measures that
can help web developers to combat many types of attackers.
In the next section, we look at the information available to
web developers about how to create secure login pages.

5. STUDY OF WEB FRAMEWORKS
With 44.4% of all websites using a content management sys-
tem (CMS) [46], support by web frameworks for secure login
pages can largely impact the security of many websites. We
perform a best-effort study of web frameworks and content
management systems, collecting information about docu-
mentation or API support regarding setting up HTTPS con-
nections, configuration of HTTP headers and educational
material related to our threat model.

Based on the popularity indicated by BuildWith and W3Techs
we selected various web frameworks [7, 47, 6] and CMSs [8].
We decided to ignore their classifications since there exists
no clear line between web framework and CMS. But we as-
sume an underlying webserver with features comparable to
Apache or nginx, for example the ability to set up HTTPS.

All studied web frameworks, e.g. PHP, ASP.NET, Java EE
or Django, provide an API for defining any HTTP headers.
This means, even without access to the underlying server, an
application developer can set security related HTTP head-
ers. We were not able to find security related educational
material for all web frameworks. That is only for Cold-
Fusion, Ruby on Rails, Express.js and Django, but not for
PHP, ASP.NET, Java EE and Laravel. Interestingly, Java
EE and Django both implement a feature to ensure HTTPS
connections through the respective framework.

We could not find any CMS which documents a feature to
set HTTP headers directly through the system itself. We in-
terpret this that all CMSs rely on the underlying web frame-
works to provide this functionality. We were not able to find
security related educational material for all CMSs. That
is only for Drupal, Joomla, TYPO3, Craft and Mura, but
not for Wordpress, DNN Software, Umbraco, Concrete5 and
Plone. It must be noted however that for frameworks with
a plugin system, e.g. Wordpress, there are many security
related plugins available. Though we do not discuss them
here, these plugins often do provide security information.
For several CMSs (Wordpress, Drupal, DNN Software, Um-
braco, Craft) we found the configuration option to ensure
HTTPS connections with a web application.

Our findings show that despite their popularity, the support
for security measures, either in the form of documentation
or directly through APIs, is not always provided. We argue

that even though framework developers cannot predict how
their software is used they should be more consequent in
creating the awareness for security issues and should directly
facilitate the configuration of HTTPS and security related
HTTP headers to reduce efforts for non-security experts.

6. SECURITY RECOMMENDATIONS
Table 2 summarizes the effectiveness of security countermea-
sures in the context of each of the five attacker models. We
discriminate not just between HTTP and HTTPS requests,
but also whether or not the browser is sending a request to
a domain for the first time.

From this table, it is clear that the different attackers, ex-
cept for A3, can be stopped through the use of HTTPS in
combination with preloaded HSTS and preloaded HPKP for
all network resources including the login page itself. A3 at-
tacker can be stopped through SRI for any resources.

In Section 2 we differentiate between an “indirect” and a “di-
rect” HPKP preload list. With an “indirect” HPKP preload
list, it is possible for a powerful attacker to compromise a CA
on the mentioned whitelist and manage to forge a trusted
certificate. With a “direct” HPKP preload list, there is no
intermediate CA that can be compromised, but the down-
side is that the preload list becomes costly to maintain.

Both versions have disadvantages, but are better than not
using HPKP or trust-on-first-use HPKP. Definitively solving
the “rogue CA” problem is the focus of ongoing research in
other fields, briefly summarized in work by Kranch et al. [23]

At this time, full protection is currently impractical since
not all browser vendors support all security measures yet.
However, as noted in Section 2, these security measures are
on the standardization track and it is only a matter of time
before they are adopted by all browser vendors.

7. RELATED WORK
To the best of our knowledge, we are the first to conduct
a large scale empirical study in which login pages are auto-
matically identified and analyzed for security measures. In
this section, we discuss other research related to our work.

Empirical studies on webpage security Other researchers
have analyzed the security of web sites, with the focus on a
specific security measure [50, 51], a specific geographic ori-
gin [12, 40] or a specific browser technology [22]. Wang et
al. manually investigated 188 login pages, examine whether
the password was submitted in clear text and then build a
browser extension based on their findings [49]. Kranch et
al. [23] study HSTS and HPKP deployment and configura-
tions in depth for domains on the respective preload lists,
and shallowly for the Alexa top one million. They find that
the adoption of these security measures is low, often miscon-
figured and often leak cookie values. Chen et al. [13] perform
a large-scale study of mixed-content websites on the HTTPS
websites in the Alexa top 100,000. They find that 43% of
them make use of mixed content and list some examples of
affected security-critical mixed-content webpages. Our fo-
cus is on the security of the password field on login pages
in the Alexa top 100,000 domains, which we systematically
and mechanically discover and evaluate against several real-



HTTP HTTPS
first request next requests first request next requests

A1 A2 A3 A1 A2 A1 A2 A3 A1 A2 A1 A2 A3 A1 A2 A1 A2 A3 A1 A2
CA CA CA CA CA CA CA CA

SRI ? ?
HPKP ? ?
pre-HPKP
HSTS ? ? ? ? ? ?
pre-HSTS ? ? ? ? ? ? ? ?
BAMC ? ? ? ? ? ?
UIR ? ? ? ? ? ?

Table 2: Which countermeasures offer protection against which attacker models, for first and subsequent requests sent over
HTTP and HTTPS. A check mark indicates successful protection, ? indicates protection in case the remote server’s public
key is preloaded in the browser (pre-HPKP means “direct” HPKP preload list)

world attackers.

Third-party content Prior work has analyzed potentially
malicious third-party content. Nikiforakis et al. [30] report
on a large-scale empirical study on how web applications in-
clude third-party JavaScript code and discuss the issue of
self-hosting of libraries as opposed to dynamically linking
to third-party domains. Li et al. [25] study the threat of
online advertising and the identification of sources serving
malicious advertising. Rydstedt et al. [36] analyzed popu-
lar web sites with respect to defenses against frame busting
techniques. Lekies et al. [24] research the problem of ma-
licious content caching in web browsers and its practicality
through a study of the top 500.000 Alexa domains. Canali
et al. [9] take an opposite approach by developing a filter
for web crawlers which identifies benign webpages such that
they can be excluded from further analysis. Orthogonal to
those works, we do not try to identify malicious content on
the Web but study the implementation of security measure-
ments on login pages and the level of protection they provide
for these pages.

Framework analysis Meike et al. [27] analyze two open-
source content management systems with respect to their
security features, but put their focus on different attacks.
Heiderich et al. [20] analyze client-side JavaScript-based web
frameworks for security features such as sandboxing mecha-
nisms and provides code samples to attack the frameworks.
Their work is complementary to ours since also here another
attacker model is considered.

Web app security recommendations The Open Web
Application Security Project (OWASP) maintains a collec-
tion of existing security technologies and guidelines for web-
server and web-client security, the OWASP Cheat Sheets [32].

Password security There exist numerous works on the
strength of a password, e.g. [14, 5, 4, 48]. In Section 3, we
defined the goal of our attackers to steal user names and
passwords from login pages. Therefore password strength
does not affect the success of an attacker in our model.
Other password related works analyze special cases under
our set-up. For example, Stock et al. [37] analyzes password
managers and their ineffectiveness to protect passwords after
a successful code injection attack. Van Acker et al. [38] in-
vestigate password meters and generators and possible pass-
word stealing attacks imposed through malicious third party
services.

8. CONCLUSION
Login pages are of crucial importance to the security and pri-
vacy of web users’ private information, because they handle
a user’s login credentials. In this work, we evaluate the se-
curity of login pages against a login attacker model, which
encompasses man-in-the-middle network attackers with and
without certificate-signing capability from a trusted certifi-
cate authority, as well as a third-party resource attacker.
By performing actual attacks against the 51,307 login pages
we discovered in the Alexa top 100,000, 32,221 or 62.8% of
login pages can be compromised fairly easily by a man-in-
the-middle attacker without special certificate-signing priv-
ileges. The fraction of login pages which can be compro-
mised is independent of the domain’s popularity rank. We
evaluate existing browser security mechanisms designed to
counter our different attacker models and conclude that to-
day’s browsers implement the needed security tools to offer
end-users a secure login page. However, a study of the most
popular web frameworks and CMSs reveals that information
on how to build a secure login page, is not always available
to web developers. Finally, we discuss measures and best
practices to improve the security of login pages.
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[33] Pellegrino, G., Tschürtz, C., Bodden, E., and
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