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ABSTRACT

The inclusion of third-party scripts in web pages is a com-
mon practice. A recent study has shown that more than half
of the Alexa top 10 000 sites include scripts from more than
5 different origins. However, such script inclusions carry
risks, as the included scripts operate with the privileges of
the including website.
We propose JSand, a server-driven but client-side Java-

Script sandboxing framework. JSand requires no browser
modifications: the sandboxing framework is implemented in
JavaScript and is delivered to the browser by the websites
that use it. Enforcement is done entirely at the client side:
JSand enforces a server-specified policy on included scripts
without requiring server-side filtering or rewriting of scripts.
Most importantly, JSand is complete: access to all resources
is mediated by the sandbox.
We describe the design and implementation of JSand, and

we show that it is secure, backwards compatible, and that
it performs sufficiently well.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: Web-based services

Keywords

Web Application Security, Web Mashups, Script Inclusion,
Sandbox, Security Architecture

1. INTRODUCTION
In the last decade, the web platform has become the num-

ber one platform on the Internet. There is a clear paradigm
shift from desktop applications and proprietary client-server
solutions towards web-enabled services. An important cata-
lyst for this paradigm shift has been the power of JavaScript
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as well as the advent of HTML5, giving web developers the
tools to build rich and interactive websites.

As a consequence of this enormous growth in popular-
ity, the web has also become the primary attack platform:
SANS [30] reported in 2009 that more than 60% of all cyber
attacks are aimed at web applications, and more than 80%
of discovered vulnerabilities are web-related. A whole range
of web attacks exists in the wild, ranging from Cross-Site
Scripting, Cross-Site Request Forgery and SQL injection to
the exploitation of broken authorization and session man-
agement. This paper focuses on one particular and impor-
tant class of web attacks, namely attacks due to the insecure
integration of JavaScript.

To enrich the functionality and interactivity of a web-
site, a common and wide-spread approach is to integrate
JavaScript from third-party script providers. Recent stud-
ies [40, 23] have shown that 96.9% of websites include scripts
from external sources, and on average each website includes
scripts from 3.1 external sources. For example, websites
integrate among others JavaScript-enabled advertisements
(such as Google AdSense and adBrite), Web analytics frame-
works (such as Google Analytics, Yahoo! Web Analytics
and Tynt), web widgets and buttons (such as Google Maps,
addToAny button and Google +1 button), and JavaScript
programming libraries (such as jQuery and Dojo).

The de facto browser security model today is defined by
the Same-Origin Policy (SOP). The SOP restricts access of
client-side scripts to resources belonging to the same ori-
gin1. For instance, the SOP ensures that document data
and cookies from one origin cannot be read by scripts be-
longing to another origin. However, the SOP includes some
important relaxations with respect to navigation and con-
tent inclusion (e.g. embedded images and scripts) [41]. In
particular, if a page from one origin includes a script from
another origin, the included script is treated as if it belongs
to the including origin, and hence it inherits all the capa-
bilities and permissions of the hosting page. This makes
malicious script inclusion a very powerful attack vector.

Several countermeasures have been proposed to limit the
capabilities of third-party JavaScript, including (1) the in-
troduction of safe subsets of JavaScript [33, 3, 15], (2) client-
side reference monitors [17, 34], and (3) server-side transfor-
mations of the script to be included [22, 32]. However, all
of these have at least one of the following limitations.

First, some approaches [17, 34] require intrusive browser
modifications, in particular to the JavaScript engine and the

1An origin is a (protocol, domain name, port) tuple.
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binding between browser and JavaScript engine. Such mod-
ifications hinder short-term deployment of the countermea-
sure.
Second, some approaches do not support client-side script

inclusion: in order to perform server-side pre-processing
(e.g. source-to-source translation or filtering) of the scripts,
the scripts have to pass through the web server [22, 33, 3].
This effectively changes the architectural model of client-side
script inclusion to server-side script inclusion.
Third, some approaches do not provide complete medi-

ation between different scripts on the same page, or to all
resources exposed in the browser. Self-Protecting JavaScript
(SPJS) [26, 16] assumes that all scripts included on a hosting
page need identical security constraints. It does not differ-
entiate between different external scripts nor between local
and remote inclusions. AdJail [32] successfully isolates un-
trusted advertisements from the Document Object Model
(DOM) of the hosting page, but since it uses iframes as iso-
lation units, it cannot fully protect security-sensitive APIs
such as XHR, Geolocation and local storage.

Inspired by recent advances in achieving object-capability
guarantees for JavaScript [22, 14, 20, 25, 8], this paper
presents JSand, a novel security architecture to securely in-
tegrate third-party JavaScript. We improve upon the state-
of-the-art with the following contributions:

1. JSand is the first JavaScript sandbox that (1) does
not need browser modifications, (2) supports client-
side script inclusion and (3) completely mediates dif-
ferent scripts and the browser APIs.

2. We show evidence that JSand is secure, compatible
with complex and widely used scripts (such as Google
Maps, Google Analytics and jQuery) and performs suf-
ficiently well.

The rest of this paper is structured as follows. Section 2
introduces the necessary background and defines the prob-
lem statement. In Section 3, the JSand architecture is pre-
sented, and Section 4 discusses several relevant implementa-
tion aspects. Section 5 evaluates the security, compatibility
and performance of JSand. Finally, Section 6 discusses re-
lated work, and we conclude in Section 7.

2. PROBLEM STATEMENT

2.1 Integrating third-party JavaScript
To enrich the functionality and interactivity of a website, a

common and wide-spread approach is to integrate JavaScript
from third-party script providers. The two most wide-spread
techniques to integrate third-party JavaScript in web pages
are through script inclusion and via iframe integration [6].

Script inclusion HTML script tags are used to execute
JavaScript as part of a web page. If the JavaScript
code is integrated from an external source, the browser
will still execute the code within the security context
of the web page, without any restrictions of the SOP.

Iframe integration HTML iframe tags allow a web de-
veloper to include one document inside another. The
advantage of iframe integration is that the integrated
document is loaded in its own security context: inte-
grated content from another origin is isolated from the
integrating web page by the SOP.

Script inclusion is the de facto script integration tech-
nique on the web, both for local scripts as well as for ex-
ternal scripts. The iframe integration technique is used for
web gadgets that don’t have strong integration needs with
the embedding web page, or have an out-of-band service-to-
service communication channel (such as the Facebook Like
button or Facebook Apps). In the remainder of this pa-
per, we focus on third-party JavaScript integration through
script inclusion.

2.2 Malicious script inclusion
The browser security model for integrating third-party

JavaScript is problematic. Once included in a website, a ma-
licious script cannot only access all the document data and
cookies, but with the advent of HTML5, the malicious script
has also access to local storage data (e.g. Web Storage, In-
dexedDB), intra-window communication (Web Messaging),
remote resource fetching via XHR and user-consented privi-
leges (such as Geolocation, media capture, access to System
Information API, and many more). This makes malicious
script inclusion a very powerful attack vector. One can dis-
tinguish between two types of attackers.

Malicious script provider The script provider has mali-
cious intentions (but covers up by providing appealing
functionality to potential customers), or becomes ma-
licious over time (e.g. intentionally, or by selling out
or quitting his business [23]).

Benign script provider under attack The script provider
has no malicious intentions, but the scripts delivered
to its clients become under control of an attacker. This
can be due to the inclusion of other untrusted resources
(e.g. in advertisement networks), due to a bug in
the delivered script (e.g. a DOM-based XSS vulner-
ability [12]), due to a server-side take-over (e.g. via
SQL injection) or due to in-transit tampering with the
scripts by a network attacker.

In both cases, the attacker controls the scripts included
by the hosting page, and by default gains full access to the
execution environment of the web page.

2.3 Requirements
Given the wide spread of script inclusion and the increas-

ing impact of malicious script inclusion, there is a clear
need for a novel security architecture to securely integrate
third-party JavaScript, but without introducing dis-
ruptive changes. Preserving backwards compatibility is
crucial in the web context. We therefore identify the follow-
ing requirements:

R1 Complete mediation All access to security-sensitive
functionality should be completely mediated by the se-
curity mechanism. This includes access to the DOM,
as well as security-sensitive JavaScript APIs (such as
Geolocation and local storage). The attacker must be
unable to circumvent the security mechanisms in place.

R2 Backwards compatible The security mechanism should
seamlessly operate in the current web ecosystem, i.e.
it should not rely on browser modifications or disable
the direct delivery of scripts from the script provider
to the browser. In addition, the security mechanism
should support the integration of legacy scripts.
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Figure 1: the JSand architecture. Inside the
browser, all access from JSand sandboxes to the
JavaScript environment is mediated according to
server-supplied policies.

R3 Performance The security mechanism should intro-
duce only a minimal performance penalty, unnotice-
able to the end-user.

3. JSAND SECURITY ARCHITECTURE
The JSand architecture enables the owner of a website to

securely integrate third-party scripts, without needing dis-
ruptive changes to either server-side or client-side infrastruc-
ture. We first give a high-level overview of the architecture
and then discuss the architectural choices under the hood.

3.1 Architectural overview
Figure 1 depicts the JSand architecture. A website owner

deploys JSand by including the JSand JavaScript library
in his webpages. When one of these pages is loaded in a
visitor’s browser, the third-party scripts to be sandboxed
are fetched directly from the servers of the script provider.
The JSand library confines each script to its own secure
sandbox, which isolates the script from other scripts and
from the DOM.

3.2 Under the hood
The JSand architecture is based upon the secure confine-

ment of third-party JavaScript. JSand realizes this through
the use of an object-capability environment. Such environ-
ment provides an appropriate device for isolating untrusted
JavaScript: without an explicit and unforgeable reference to
a security-sensitive resource (i.e. an object or a function),
a script is unable to access the resource or make use of its
capabilities. The object-capability model is at the basis of
Caja [22], and many other safe subsets of JavaScript [14].
The JSand library invokes third-party scripts, initially

giving them only a minimal set of unforgeable references. To
maintain control over all references acquired by a sandboxed
script, JSand applies the Membrane pattern proposed by
Miller [21]. Our implementation of this pattern consists of
placing policy-enforcing wrappers around objects that pro-
vide potentially security-sensitive operations. Whenever one
of these objects returns a reference to another object, the

membrane is extended to cover that object as well. This en-
sures a sandboxed script never has direct access to a security-
sensitive operation.

The membrane’s wrappers intercept all operations per-
formed on the objects they wrap and hence implement the
security policy enforcement points. On each enforcement
point, the wrapper consults the security policy to determine
whether or not the corresponding operation is permitted. If
not, this will be indicated by the security policy and the
operation will be blocked. The architecture is not bound
to any specific type of security policy, which gives website
owners the freedom to enforce arbitrarily complex policies.

Since all interactions between a script and the browser
are performed by calling DOM methods, it suffices to place
a wrapper around each DOM object in order to enforce a
policy on all security-sensitive operations. These include
not only operations to read or modify content of the hosting
page, but also to communicate with other scripts and to use
browser-provided JavaScript APIs.

In conclusion, the JSand architecture provides an end-to-
end solution for securely integrating third-party JavaScript
scripts on a website. The website owner is able to define and
enforce security policies on scripts, which puts him back into
the driver’s seat. JSand does not require disruptive changes
to the architecture of the web: it does not break direct script
delivery towards the browser, and can be deployed without
additional server-side or client-side infrastructure. The com-
bination of the object-capability model and the Membrane
pattern ensures that all access from a sandboxed script to
security-sensitive operations passes through a membrane’s
wrappers, which enforce the security policy.

4. PROTOTYPE IMPLEMENTATION
This section reports on the development of a mature JSand

prototype, which is designed to work in ECMAScript 5 (ES5)
compatible browsers with support for the proxy features of
the upcoming ES Harmony standard. The current prototype
runs seamlessly in Google Chrome v20.0.1132.21.

In Subsections 4.1 and 4.2, we present the client-side tech-
nology for executing third-party JavaScript in a confined
sandbox. Subsection 4.3 describes the type of security poli-
cies that are enforced. Next, Subsection 4.4 illustrates how
access to security-sensitive operations is completely medi-
ated. Subsection 4.5 discusses how our prototype deals with
dynamic script loading and Subsection 4.6 describes a set of
automatic script transformations to improve compatibility
with legacy scripts.

4.1 Object-capability system
As described in Section 3.2, the JSand architecture re-

lies on an object-capability environment to provide complete
mediation. The ECMAScript language does not qualify as
an object-capability language by itself. For instance, any
script has access to all global variables by default, and conse-
quently has capabilities that are not under control of any se-
curity framework. However, in 2008, Miller et al. [22] identi-
fied a subset of ES3 which forms a true object-capability lan-
guage. More recently, the Google Caja team has identified a
subset of ES5 strict, named Secure ECMAScript (SES), that
also provides such an object-capability language. Moreover,
they have developed a JavaScript library that enables the
execution of SES on ES5-compatible browsers [20]. This li-
brary provides methods for safely evaluating SES-compliant
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code in an isolated environment. A key feature of the li-
brary is that it can execute completely at the client side
and hence doesn’t rely on any custom server-side architec-
ture. JSand uses the SES library to realize its underlying
object-capability environment.
However, since SES is a subset of ES5 strict, which in

turn is a subset of ES5 non-strict, not all currently deployed
JavaScript scripts are SES-compliant. Furthermore, the lan-
guage supported by the SES library differs from true SES
in several minor ways, further reducing compatibility with
legacy scripts. Two important incompatibilities between
ES5 and the SES-like language supported by the SES library
are described below.

Global variables In ES5, the global window object can
have arbitrary properties and for each of these prop-
erties there is a corresponding global variable with the
same name. Conversely, for any global variable, a cor-
responding property with the same name is defined on
the global object. In SES, this is no longer the case:
global variables are not aliased by properties on the
global object or vice versa.

Strict mode SES enforces strict mode for all scripts. Hence,
ES5 non-strict code might be incompatible with SES.
For instance, strict mode drops support for the with

keyword, prevents the introduction of new variables
into the outer scope by an eval and no longer binds
this to the global object in a function call.

SES was designed to support (only) recognized ES5 best
practices. Therefore, scripts that adhere to these best prac-
tice standards are SES-compliant and hence we expect the
number of fully SES-compliant scripts to increase progres-
sively as these best practices become more widespread. Al-
though not all legacy scripts run without errors under the
SES library, the secure confinement of these scripts is never
at stake. Nevertheless, we have developed a support layer
to improve compatibility with legacy scripts. This layer is
described in detail in Section 4.6.
To enforce the object-capability model and to provide sup-

port for legacy scripts, the SES library and the support
layer need access to the source code of scripts to be sand-
boxed. Our prototype fetches this code using the XML-
HttpRequest (XHR) API. By default, this API is subject
to the SOP, but recently added web features have facili-
tated cross-domain interactions, namely Cross-Origin Re-
source Sharing (CORS) [37] and the Uniform Messaging Pol-
icy (UMP) [38]. In case CORS or UMP are not supported by
the script provider, our solution can fall back to a server-side
JavaScript proxy [39].

4.2 Policy-enforcing membranes

4.2.1 The Proxy API
To implement the Membrane pattern in an efficient and

transparent way, our prototype uses the Harmony Proxy
API, which is scheduled to be standardized in the next ver-
sion of ECMAScript [35]. This API enables us to create
wrappers that generically intercept all property accesses and
assignments on specific objects, as shown in the code below.

function wrap(target , policy) {
var handler = {

get: function(proxy , propertyName) {
if (policy.isGetAllowed(propertyName)) {

return target[name];
}
return null;

}
set: function(proxy , propertyName , value) {

if (policy.isSetAllowed(propertyName)) {
target[name] = value;
return true;

}
return false;

}
}
return Proxy.create(handler , Object.getPrototypeOf(

target));
}

The wrap function creates a simple policy-enforcing wrap-
per around a specific target object. All property accesses
and assignments on this wrapper are intercepted by the get
and set traps of the handler object, which uses the policy

object to determine whether or not the access or assignment
is allowed.

4.2.2 Membrane implementation
To implement the Membrane pattern, the handlers used in

JSand transitively wrap all objects they return from the get
trap and unwrap the objects they receive in the set trap.
The entire prototype chain of a wrapper must be wrapped
as well, to prevent an attacker from piercing the membrane
by accessing an unwrapped prototype.

If an object to be returned from the get trap is a function,
a function proxy that wraps the original function is returned.
This function proxy first unwraps all its arguments, then
calls the original function using these unwrapped arguments
and finally wraps the return value before returning it to
the caller, thereby further expanding the metaphorical mem-
brane. Some methods, such as window.addEventListener,
take a callback function as an argument; like all other ar-
guments, this callback must be wrapped appropriately to
uphold the membrane. Because a callback function is exe-
cuted in the context of a sandbox, its wrapper must wrap
each of its arguments and must unwrap the return value after
calling the original function with the wrapped arguments.

Each sandbox keeps a mapping from its wrappers to the
target objects they wrap and vice versa. This makes it pos-
sible to unwrap previously wrapped objects and to ensure
that there is at most one wrapper (per sandbox) correspond-
ing to each target object, making the membrane identity-
preserving [4]. The mapping from wrappers to their corre-
sponding targets is only accessible from outside the sand-
box, for otherwise an attacker could use it to escape from
the sandboxed environment.

Whereas sandboxed code should always be confined to the
bounds of its own sandbox, many use cases require an op-
eration to introduce code from outside a sandbox into an
existing sandbox. Such operations enable a website owner
to extend or interact with a sandboxed script. JSand sand-
boxes provide two functions for introducing new code into
them: innerEval(code) and innerLoadScript(url). The
first function evaluates a literal code string, while the second
loads a script at a given URL.

In conclusion, the Membrane pattern transparently iso-
lates a sandbox from code running outside of it or in other
sandboxes. Since the handlers intercept each property ac-
cess and assignment made on a wrapper, they contain the
enforcement points which consult the security policy to de-
termine whether or not an operation is permitted.
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4.3 Security policies
Defining good security policies is important for ensuring

the secure confinement of sandboxed scripts. To avoid need-
ing a known-good version of a script to be sandboxed, a pol-
icy should be based on the claimed functionality of a script,
as opposed to being based on actions performed by any spe-
cific version of the script. Generic templates can be provided
to support website owners in defining good security policies.
Since the JSand architecture is independent of the specific

type of security policy to enforce, policies can range from
simple stateless policies, to arbitrarily complex policies. In
both cases, the security policy can be specified as a Java-
Script function that takes information about the operation
to be performed as input and returns a boolean indicating
whether or not the operation is allowed. We discuss three
types of policies in more detail below.

4.3.1 Stateless policies
Stateless policies determine whether or not an operation

is permitted based on information associated with that op-
eration alone. For instance, a stateless security policy could
specify that a specific function call performed on a specific
object is only allowed when the value of the first argument
is on a predefined whitelist.
WebJail [34] is an example of such a stateless policy for se-

curely integrating third-party JavaScript. It classifies security-
sensitive operations into nine categories, including DOM ac-
cess, cookies, external communication, device access, etc.,
which can be permitted or blocked individually. A WebJail
policy is based on a static whitelist of each of these cate-
gories, and could easily be implemented with JSand.

4.3.2 Stateful policies
Stateful policies can accumulate internal security state

over multiple calls and use this global state as part of the
policy, in addition to the local information made available
on each operation request. For instance, a stateful security
policy could specify that the use of XHR is allowed as long
as no cookies have been read. This type of policy is more
expressive than its stateless counterpart, but it is also more
complex to specify and more prone to mistakes.
The shadow page in AdJail [32] is another example of

internal state that could be accumulated over multiple calls.
This page represents a ghost DOM, which is not directly
rendered to the user, but allows an advertisement to execute
various DOM operations in a confined environment.

4.3.3 Advanced policies
More complex policies can be used to enforce more ad-

vanced security properties, such as information flow security.
One example of this is a set of policies to implement nonin-
terference through secure multi-execution (SME) [7, 5]. For
any script, SME can classify each input and each output
channel as either H (high security, confidential) or L (low
security, public). A script is noninterferent if its low-level
outputs are not influenced by high-level inputs. Consider
for instance the following script on a webserver at mydo-

main.com.

var cookies = document.cookie;
document.getElementById(’some -img’).src = ’http ://

attacker.com/img.jpg?c=’ + escape(cookies);

The first line can be classified as H input, since cookie values
are security sensitive. The second line can be classified as

L output, since this triggers an HTTP request to a different
domain. This program is interferent, because the low-level
output statement at line 2 is clearly influenced by the high-
level input statement at line 1.

Under secure multi-execution, a script is run multiple times,
once for each security level. Outputs of a given security level
are only generated in the execution belonging to that secu-
rity level and inputs of a given security level are replaced by
undefined in all executions of a lower level. Hence, high-
level, security-sensitive input can never leak to low-level,
public output channels, or even have an influence on them.

To multi-execute a script using JSand, that script must
be executed once for the low security level and once for the
high security level, each time in a different sandbox, with
a different security policy. The low-level policy should dis-
able all high-level inputs and ignore high-level outputs, while
the high-level policy should simply ignore low-level outputs.
Since each output statement is executed in only one of the
executions, the net effect of a noninterferent script under
secure multi-execution will be the same as the net effect of
executing the same script without multi-execution.

4.4 Wrapping the DOM
All interactions between a script and the browser are per-

formed through the DOM. Hence, to control access to all
security-sensitive operations, JSand needs to control access
to all facets of the DOM. To implement this, each sandboxed
script is initially only given a single reference to a wrapper
of the window object, which is the root of the DOM tree.
As described in Section 4.2, all property accesses, property
assignments and function calls on this wrapper or on any
object transitively reached from it are intercepted by a han-
dler. These handlers can thus enforce an arbitrary policy on
the entire DOM, and hence effectively control access to all
security-sensitive operations.

For any DOM object wrapper, a distinction can be made
between two categories of properties. The first category
consists of standard DOM properties, i.e. properties that
are part of the DOM as defined by the ECMAScript stan-
dard (or implementation-specific properties provided by the
browser). The second category consists of custom proper-
ties that have been added to a DOM object wrapper by a
sandboxed script. For instance, window.document belongs
to the first category, while window.googlemaps could be-
long to the second. Properties from these two categories
need to be handled differently. Assignments to standard
DOM properties should be propagated outside the sandbox
to the corresponding target property on the real DOM ob-
ject (if allowed by the security policy), since this is the only
way a sandboxed script can interact with the browser. Cus-
tom properties should however be confined to the bounds of
the sandbox, to prevent sandboxed code from polluting the
global namespace and from reading or modifying properties
defined outside the sandbox.

To make the distinction between standard DOM proper-
ties and custom properties, JSand uses a statically defined
DOM description, derived from the W3C DOM specifica-
tion [36]. This description consists of an array of property
descriptors, indexed by a DOM object name (e.g. Window)
and a property name (e.g. alert). Since each descriptor
corresponds to a standard DOM property, they enable the
handlers to determine whether or not a given property is a
standard DOM property
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4.5 Dynamic script loading support
From experience, we have learned that many scripts dy-

namically load additional scripts during their execution. This
is typically accomplished by inserting a new script tag with
a src attribute in the document, because this method is not
under restriction of the same origin policy. However, when
a script is included this way, it is executed in the global con-
text. Hence, if we would allow sandboxed scripts to simply
add new script tags to the document, they could trivially
break out of their sandbox. Any script included by a sand-
boxed script should execute within that same sandbox.
For this reason, JSand uses special handlers to intercept

methods that allow script tags to be added to the doc-
ument, including node.appendChild, node.insertBefore,
node.replaceChild, node.insertAfter and document.write.
The first four of these take a (partial) DOM tree as argu-
ment and append or insert it at a certain place in the DOM.
Our handlers for these methods search the given DOM tree
for script tags, extract the value of the src attribute and ex-
ecute the corresponding scripts in the sandbox that included
them, using the innerLoadScript function described in Sec-
tion 4.2.2. The document.write method is similar but takes
an HTML string as argument and appends that string ver-
batim to the document. The handler for this method parses
the given HTML string, extracts script tags out of it and
loads them as described above.
We have considered two different techniques for parsing

a given HTML string in JavaScript. The first technique
consists of creating an iframe and setting its srcdoc at-
tribute [1] to the given HTML. To prevent the iframe from
fetching and executing scripts included in the HTML, its
sandbox attribute [1] must be set as well. The second tech-
nique consists of using a pure JavaScript library to parse
the HTML [11]. The iframe-based technique has a poten-
tial performance benefit, since the parsing is done by na-
tive code in the browser instead of in JavaScript. More-
over, using the first technique ensures that the HTML is
parsed exactly as the browser will interpret it. However,
one of the problems of this approach, is that the parsing
is performed asynchronously. That is, we can only access
the iframe’s fully populated DOM tree from its onload call-
back, which is triggered some time after setting the srcdoc

attribute. Consequently, scripts that immediately make use
of the HTML written by document.write could fail, since
the HTML might not yet have been processed. Performing
a continuation-passing style transformation on these scripts
could solve this problem, but this is a complex transforma-
tion which we leave for future work. Our prototype uses the
second technique, since it does not suffer from this problem.

4.6 Support for legacy scripts
Although the SES library natively supports scripts adher-

ing to recognized ES5 best practices, as described in Sec-
tion 4.1 not all currently deployed JavaScript scripts do so.
Although the secure confinement of legacy scripts is never
at stake, not all of them run without errors under the SES
library. Therefore, we have developed a support layer to
further improve the compatibility with these legacy scripts,
based on three abstract syntax tree (AST) transformations.

T1 Adding a property to the global window object normally
introduces that property as a global variable, but this
does not hold in a SES environment. This transforma-
tion introduces a global alias variable for each property

of window. The variable is updated whenever an as-
signment is made to its corresponding property.

T2 Conversely, declaring a global variable normally creates
an alias property on the window object, but this doesn’t
hold in a SES environment. This transformation adds
a property on window for each global variable. The
property is updated whenever an assignment is made
to its corresponding global variable.

T3 Since SES enforces strict mode for all scripts, ES5 non-
strict code might be incompatible with SES. The most
common incompatibility we have encountered is the
lack of this-coercion. That is, this is no longer bound
to the global window object in a function call. This
transformation replaces this by the expression (this

=== undefined ? window : this).

We have implemented a client-side component for apply-
ing these transformations, using the UglifyJS JavaScript
parser [19]. These transformations do not provide a full
translation from ES5 to SES, but they are sufficient to make
many legacy scripts work with our prototype.

5. EVALUATION
In this section we evaluate to what extent JSand satisfies

the requirements set forth in Section 2.3.

5.1 Complete mediation
All sandboxed scripts are executed in an object-capability

environment, set up by the SES library. Our implementa-
tion of the Membrane pattern ensures that each DOM access
and JavaScript API call made by a sandboxed script is as-
sessed by the security policy. Based on the theory of object-
capability systems, this provides complete mediation.

Note that JSand provides a one-way isolation and hence
makes no attempt to protect a sandboxed script from its
environment. That is, code running in the global security
context, such as browser plugins and unsandboxed scripts,
have the power to modify a sandbox’s security policy or to
inject a DOM proxy that allows access to any DOM object.
However, since malicious global code has already full power
over the web page, we consider protecting against such sce-
narios out of scope for our solution.

5.2 Backwards compatibility
We have extensively and successfully tested our proto-

type on a variety of JavaScript scripts. In this section we
report and discuss in detail three of the most widespread in-
cluded scripts around: Google Analytics, Google Maps and
the jQuery library. Google Analytics is included from more
than 68% of all domains from the Alexa Top 10 000, making
it the most included script on this list [23]. Google Maps is
the most included web mashup API according to [28], being
used in 17.41% of registered mashups. jQuery is the most
popular JavaScript library in use today, included in more
than 57% of the top 10 000 websites to date [2]. As future
work, we would like to extend our evaluation to more legacy
scripts.

5.2.1 Google Analytics
Google Analytics (GA) is a web analytics service that gen-

erates statistics about visitors to a website. The GA API
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allows web administrators to collect custom visitor proper-
ties, in addition to the standard properties that are collected
by default (such as referrer and geographical location). The
collected statistics can be monitored using a dashboard in-
terface on the GA website.
To enable GA, the website owner must add a small Java-

Script code template provided by Google to the header of
the page to track. This template sets up an array of op-
tions to pass to the GA service and dynamically adds a new
script tag to the page to include the main GA script. Any
script included like this has unrestricted access to the DOM,
making the page vulnerable to malicious script inclusions.
Manual inspection of the GA script is practically impossi-

ble, since the code is minified. Moreover, since the main GA
script is loaded dynamically from the Google servers, any
static, offline security analysis would fail to detect malicious
changes introduced to the script after the initial analysis.
However, by running GA in a JSand sandbox with a policy
that permits only the operations necessary for a benign web
analytics script, the impact of a malicious action on behalf
of the GA script can be reduced to a minimum. The code
snippet below shows how this can be implemented.

// main page:
var sb = new jsand.Sandbox(’ganalytics.js’,policy);
sb.load();

This code snippet creates a new sandbox and initializes it
with the ganalytics.js script, which is shown below and
consists of the code template provided by Google.

// ganalytics.js:
var _gaq = _gaq || [];
_gaq.push([’_setAccount ’, ’UA-xxxxxxxx -x’]);
_gaq.push([’_trackPageview ’]);

(function () {
var ga = document.createElement(’script ’);
ga.src = ’http ://www.google -analytics.com/ga.js’;
var s = document.getElementsByTagName(’script ’)[0];
s.parentNode.insertBefore(ga, s);

})();

Both the ganalytics.js script and the main ga.js script
(which is loaded from the code above) are executed in the
same sandbox and are patched-up automatically, based on
the AST transformations described in Section 4.6. The
following code fragment shows the first two lines of the
patched-up ganalytics.js.

// patched -up ganalytics.js:
var _gaq = _gaq || [];
window._gaq = _gaq;
[...]

The global variable _gaq is explicitly aliased as a property on
window. This transformation is necessary because the ga.js
script frequently refers to the _gaq array as window._gaq.
Such references would fail without the patch shown here.
The _gaq array exposes an API to interact with GA after

it has been initialized, for instance to add a custom property
to collect or to track the click of a button. The website owner
can access this array using the innerEval method described
in Section 4.2.2. To facilitate these interactions and to make
abstraction of the fact that GA is running in a sandbox, the
website owner could implement an object that automatically
forwards its calls to the _gaq array inside the sandbox.
Clearly, the effort required to run GA in a JSand sandbox

is minimal and introduces no disruptive changes whatsoever.
Nevertheless, the power of the GA script is reduced to a safe

Figure 2: Tree of scripts dynamically loaded by
Google Maps.

minimum, dramatically reducing the impact of a malicious
script inclusion attack.

5.2.2 Google Maps
The Google Maps (GM) API enables website owners to

embed a Google Maps gadget on their website. The standard
way to add this gadget to a page is to (1) place a div element
somewhere in the body where the map should be displayed,
(2) add a script tag to the head of the page, which loads
the GM library from the Google servers and (3) add a small
piece of JavaScript code to the page, to create a new GM
instance in the div element.

As with Google Analytics, the default way of including the
GM script lets it have unrestricted access to the DOM and
JavaScript APIs, putting the confidentiality and integrity of
the entire web page at risk. JSand enables the website owner
to confine the GM gadget to a sandbox with the minimal
privileges required for legitimate operation.

The steps required to run GM in a JSand sandbox are very
similar to the standard steps described above. In step (1), in
addition to placing a div element somewhere in the body, the
integrator must include the JSand library and the libraries
it depends on. In step (2), instead of adding a script tag
to directly load the GM library in the global page context,
a new sandbox must be created for the GM script to run
in. In step (3), the website owner can use the innerEval

method to create a new GM instance in the sandbox. These
steps are depicted in the following code fragment.

var sb = new jsand.Sandbox(’http :// maps.googleapis.
com/maps/api/js?sensor=false’, policy);

sb.load();
sb.innerEval(
"var m = window.google.maps;
var options = {

center: new m.LatLng (-34.397, 150.644) ,
zoom: 8, mapTypeId: m.MapTypeId.ROADMAP

};
var map = new m.Map(document.getElementById(’

map_div ’), options);"
);

When the main GM script is loaded, a complex process of
dynamically loading and patching other scripts is performed
in the background. Figure 2 depicts the sequence of scripts
that are dynamically loaded from the main js script ini-
tially loaded in step (2). In addition to the scripts shown
in this figure, more scripts are loaded and patched when-
ever the user changes the map’s viewport (by dragging it or
changing the zoom level). All three translations described
in Section 4.6 are required for the GM gadget to work.

The GM API provides extensive support for customiza-
tion, to support feature-rich web mashups built around the
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GM gadget. For instance, website owners can provide cus-
tom map overlays, place markers, register callbacks for mouse
events, etc. As with GA, a website owner can use the in-

nerEval method to interact with the sandboxed GM gadget.
The fact that JSand can successfully execute this gadget in

a sandbox without any compatibility issues, illustrates that
our solution is able to sandbox complex JavaScript gadgets
that depend on dynamic script inclusions and that feature
advanced DOM interactions.

5.2.3 jQuery
The jQuery library aims to provide a simple cross-browser

API for performing common JavaScript operations, such as
creating and selecting DOM elements, handling events, in-
voking Ajax interactions, etc. While jQuery can be used as
an abstraction layer on top of an extensive set of JavaScript
APIs, a website owner typically uses only a limited subset of
what the library has to offer. By running jQuery in a sand-
box with tight restrictions on the permitted JavaScript API
and DOM operations, the risk and impact of a malicious
script inclusion attack are reduced dramatically.
For our jQuery evaluation scenario, we executed jQuery

together with the jQuery-geolocation plugin [24] in a sand-
box, using a fine-grained security policy that allows us to
toggle access to the JavaScript Geolocation API. Disabling
the Geolocation API in the policy effectively prevents jQuery
from using it in the sandbox. The following code fragment
shows how this scenario is implemented.

var sb = new jsand.Sandbox(’jquery -1.7.2. js’,policy);
sb.load();
sb.innerLoadScript(’jquery -geolocation -0.1.js’);
sb.innerEval(
"if (jQuery.geolocation.support ()) {

jQuery.geolocation.find(function(loc) {
alert(loc.latitude +\", \"+loc.longitude);

});
} else { alert(’Geolocation not supported ’); }");

This scenario illustrates that, with minimal effort, a website
owner can create a secure JSand sandbox around an extensi-
ble JavaScript library, while still being able to interact with
it from outside the sandbox.

5.3 Performance benchmarks
To evaluate the runtime overhead of our prototype, we

have conducted micro- and macro-benchmarks. All bench-
marks were run using Google Chrome v20.0.1132.21 on Ubuntu
11.04 x86-64, running on an Intel Core 2 Duo T8300 2.4GHz
processor with 4GiB of RAM.

5.3.1 Micro benchmarks

JSand framework load time. To measure the load time
of the JSand framework, a page was created that loads the
framework but doesn’t use it. This page was reloaded 1000
times and the elapsed time was recorded. The average load
time measured in this way was 71.5±1.8ms. The same ex-
periment was run with all JavaScript code commented out,
so the same network load time would be maintained, but
the code would not be executed. The load time in this case
was 23.0±0.2ms. This means that once loaded from the net-
work, the framework takes on average 48.5ms to deploy on
the client side.

Third-party library load time. Similar experiments were
performed to measure the overhead of loading and pars-
ing a third-party JavaScript library into a JSand sandbox.
We chose jQuery as a representative JavaScript library and
loaded it in a JSand sandbox, as well as a regular, unsand-
boxed JavaScript environment, using XHR and eval(). In
both cases, we supplied a real JavaScript library as well as
a commented-out version to factor out network overhead.

In a regular JavaScript environment, the code loads in
53.0±0.8ms and 26.8±0.2ms for normal and commented-
out code respectively. Inside a JSand sandbox, the code
loads in 1458.2±16.0ms and 107.6±1.4ms respectively, so
that the overhead of parsing the library code is about 1350.6ms.

A large portion of this overhead is due to the script rewriter
of the legacy support layer described in Section 4.6. Since
jQuery is SES-compliant, this rewriting step is not required.
Disabling it lowers the average load time from 1458.2ms
to 705.8±1.1ms, and the average overhead from 1350.6ms
to 598.2ms. This means that 44.3% of the overhead can
be contributed to our efforts for making legacy code SES-
compliant.

Membrane transition cost. To verify the runtime over-
head of a function call crossing the membrane, a function
was executed both inside and outside a JSand sandbox 1 mil-
lion times and the elapsed time is recorded. We chose the
window.clearTimeout function as a representative function,
because intuitively it should return quickly when no timer is
registered. When called from inside the sandbox, the win-

dow.clearTimeout call must cross the membrane separating
the sandbox from the real JavaScript environment. Outside
the sandbox, the average execution time is 0.9±0.0μs, while
inside the sandbox it is 8.0±0.1μs.

5.3.2 Macro benchmarks
The most important metric that counts when executing

JavaScript in a browser, is the user experience. Ideally, the
user should not notice that JSand is being used at all. To
measure how much overhead the user experiences, we cre-
ated a typical web application using Google Maps and mea-
sured two things: the total load time of the web application,
and the delay a user experiences when interacting with it.

The load time of the web application was measured from
the time the page is loaded until the Google Maps API emits
a ‘tilesloaded’ event, signaling that the application is ready
to be used. Running outside of the JSand sandbox, this
load time is 308.0±13.7ms, and 1432.8±24.2ms inside of it.
Keeping in mind that a large portion of this overhead is
due to script-rewriting for legacy code, the total overhead
without the legacy support layer can be estimated to be
about 626.5ms.

To measure the delay experienced when interacting with
the application, we waited until the application was loaded,
and then panned 400 px to the right, 100 times. The aver-
age time elapsed between two pans was considered as a rea-
sonable approximation of the user-experienced delay. This
delay is 320.2±0.8ms outside and 420.0±2.7ms inside the
sandbox.

The overall performance of a JSand sandbox is accept-
able. The overhead when loading a reasonably-sized SES-
compliant JavaScript library inside the sandbox, is about
203%. For legacy scripts, JSand requires a code transfor-
mation step that results in a total overhead of about 365%,
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but it is expected that this step can be removed or at least
sped up significantly for future JavaScript code in future
browsers. Furthermore, the tendency of users to keep cer-
tain websites open using persistent tabs, makes the load time
overhead less important. Additionally, despite the nine-
fold execution time of a function-call traversing the sandbox
membrane, the delay experienced by a user when using a
realistic web application inside a JSand sandbox, is an ac-
ceptable 31.2%, corresponding to an absolute delay on the
order of 100ms.

6. RELATED WORK

Server-side processing of scripts.
A common technique for preventing undesired script be-

havior is to restrict the untrusted code (i.e. the third-party
component) to a safe subset of JavaScript [15]. Compliance
to the subset is verified at the server side. The allowed op-
erations within the subset prevent the untrusted code from
obtaining elevated privileges, unless explicitly allowed by the
integrator. ADSafe [3], ADsafety [27] and FBJS [33] are
examples of techniques where third-party JavaScript must
conform to a certain JavaScript subset. Techniques such as
Caja [22], Jacaranda [9] and Live Labs’ Websandbox [18]
on the other hand, statically analyze and rewrite the third-
party JavaScript on the server side into a safe version.
Instead of forcing the use of a JavaScript subset, the Java-

Script code can also be instrumented with extra checks that
mediate access to certain functionality. BrowserShield [29]
and Browser-Enforced Embedded Policies (BEEP) [10] are
examples of such instrumentation on the server-side.
While safe subsets, code rewriting and server-side code

instrumentation can restrict third-party code at the source,
their adoption by mashup integrators is problematic. These
techniques require either access to code running on the server-
side, or require the website owner to implicitly trust the
JavaScript provider to deliver safe JavaScript code. In real-
world scenarios, it is infeasible to impose any such restric-
tions on third-party code providers. In contrast, JSand re-
quires no server-side processing of the third-party code and
imposes no fundamental restrictions on included code.

Extending the browser with a reference monitor.
A second class of techniques extends the browser to en-

force code restrictions. Systems like ConScript [17], Web-
Jail [34] and Contego [13] require modifications to the Java-
Script engine to enforce policies on third-party code, while
AdSentry requires the installation of a Firefox extension to
restrict the functionality available to advertisements.
Browser modifications to restrict third-party JavaScript

can be implemented very efficiently and can guarantee that
enforcement cannot be circumvented. The major disadvan-
tage of this approach however, is that the browser must be
modified. Unless all the users of a web application are using
a browser which implements the desired modification, there
is little or no incentive for the website owner to make use
of it. Because of the large variety of active browser ven-
dors and versions on the internet, it is unrealistic to assume
that a certain modification will ever be implemented in all
browsers. For this reason, JSand does not depend on any
special browser-side features except for what is available in
the web standards.

Leveraging existing browser security features.
Finally, some approaches leverage recent browser security

extensions to contain scripts. The new sandbox attribute
of the iframe element in HTML5 [1] can restrict third-party
JavaScript in a very coarse-grained way: it only supports to
completely enable or disable JavaScript.

The Content Security Policy (CSP) [31] allows the inser-
tion of a security policy through HTTP response headers and
meta tags, which must be enforced in the browser. This pol-
icy can restrict the locations a web application loads its con-
tent from, thus preventing some forms of content-injection.
However, CSP does not provide any fine-grained control over
which JavaScript functionality is available to a script.

AdJail [32] is geared towards securely isolating ads from a
hosting page for confidentiality and integrity purposes, while
maintaining usability. The ad is loaded on a shadow page
that contains only those elements of the hosting page that
the web developer wishes the ad to have access to, and it
relies on the SOP to isolate the shadow page. Changes to
the shadow page are replicated to the hosting page if those
changes conform to a specified policy. Likewise, user actions
on the hosting page are mimicked to the shadow page if
allowed by the policy. AdJail is a good approach to restrict
access to the DOM, but cannot enforce a policy on the other
JavaScript APIs like JSand does.

Self-protecting JavaScript (SPJS) [26, 16] is a client-side
wrapping technique that applies advice around JavaScript
functions, without requiring browser modifications (unlike
[17] or [34]). It builds on standard aspect-oriented libraries
for JavaScript. The wrapping code and advice are provided
by the server and are executed first, ensuring a clean environ-
ment to start from. SPJS does not guarantee that all access-
paths to certain JavaScript functionality can be restricted,
because the aspect library it relies on was not designed with
security in mind. JSand uses the Membrane pattern instead,
which was designed to provide complete mediation.

Secure ECMAScript (SES) [20] is a subset of ES5 strict
which provides an object-capability language. Unlike Caja,
from which it originated, SES runs completely on the client-
side without any browser modifications. To the best of our
knowledge, JSand is the first fully functional JavaScript in-
tegration technique built on SES, capable of handling legacy
scripts such as Google Maps and Google Analytics.

7. CONCLUSION
This paper introduced JSand, a server-driven but client-

side JavaScript sandboxing framework that does not rely on
any browser modifications. We have implemented a proto-
type of this framework and evaluated it on the most widespread
JavaScript scripts around. Although there has been a lot of
activity in this research area, we are the first to deliver a
solution that provides complete mediation, backwards com-
patibility and an acceptable performance overhead.
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