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Abstract. Today’s web applications rely on the same-origin policy, the
primary security policy of the Web, to isolate their web origin from
malicious client-side JavaScript.

When an attacker can somehow breach the same-origin policy and
execute JavaScript code inside a web application’s origin, he gains full
control over all available functionality and data in that web origin.

In the JavaScript sandboxing field, we assume that an attacker has the
ability to execute JavaScript code in a web application’s origin. The goal
of JavaScript sandboxing is to isolate the execution of certain JavaScript
code and restrict what functionality and data is available to it.

In this paper we discuss proposed JavaScript sandboxing systems
divided into three categories: JavaScript sandboxing through JavaScript
subsets and rewriting systems, JavaScript sandboxing using browser
modifications and JavaScript sandboxing without browser modifications.

1 Introduction

The Web today is unthinkable without JavaScript. Studies [96] show that close
to 90 % of the top 10 million websites of the Web use JavaScript.

JavaScript can turn the Web into a lively, dynamic and interactive end-
user experience. For this purpose, today’s browsers have an arsenal of powerful
JavaScript functionality at their disposal which all becomes available to Web
applications running JavaScript. Examples of this powerful functionality include
access to audio and video recording devices, real-time communication (RTC)
channels than can pierce firewalls, the ability to store data on the client-side, 3D
graphics rendering facilities and more.

Giving all this power to unfamiliar web applications is not necessarily a
good idea. With great power comes great responsibility, a trait not commonly
found in web applications because they often include third-party JavaScript from
untrusted sources [70]. In the wrong hands, this powerful JavaScript functionality
can be abused to e.g. access and steal sensitive information.

A typical scenario illustrating third-party JavaScript inclusion can be found
in online advertising. A recent security-related event in this setting equally illus-
trates the threat associated with third-party JavaScript inclusions. In July 2015,
the website of renowned security expert Troy Hunt experienced [89] a Cross-
Site Scripting attack launched through a script used for online advertising.
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The attack was obvious and visible because the attacker seemingly set out to
create a proof-of-concept to display a JavaScript prompt window. However, this
attack could have caused a lot more damage while at the same time remain
invisible if the attacker has chosen to do so instead.

This scenario is a good case for restricting JavaScript functionality, otherwise
known as JavaScript sandboxing. Had the advertisement run in a JavaScript
sandbox with restricted functionality, then a successful attack would not be able
to abuse the full power of a browser’s JavaScript APIs.

In this paper, we discuss the current state-of-the-art research in JavaScript
sandboxing on the client-side, and in the browser in particular. JavaScript can
be used elsewhere on the client-side, for instance as an embedded scripting in
browser extensions [29,66], OpenOffice [9], MongoDB [63], etc. JavaScript can
also be used on the server-side, e.g. Node.JS [4], and there are even microcon-
trollers that understand JavaScript [21,87]. We consider these use cases out of
scope and only focus on JavaScript as used in web pages visited by web browsers.

Based on the typical web scenario and attacker model, we divide the
JavaScript sandboxing literature in three categories: JavaScript sandboxing
through JavaScript subsets and rewriting systems, JavaScript sandboxing using
browser modifications and JavaScript sandboxing without browser modifications.

The remainder of this paper is organized as follows. Section 2 draws the con-
text and introduces background material. Section 3 discusses JavaScript sand-
boxing systems involving JavaScript subsets and rewriting systems. Section 4
discusses browser modifications to achieve JavaScript sandboxing. Section 5 dis-
cusses JavaScript sandboxing systems which do not require any browser mod-
ifications. Section 6 highlights two well-known JavaScript sandboxing systems
and details their usage in the real world. Section 7 concludes this work with a
brief discussion of the advantages and disadvantages of the three categories of
JavaScript sandboxing systems.

2 Background – Setting the Context

In this section we set the context for the remainder of this paper.
First, we look at a reference browser architecture, the JavaScript language

and the different JavaScript APIs available to web developers in Sects. 2.1 to 2.3.
We note that a browser is composed of several reusable subsystems such as the
JavaScript engine and that the JavaScript engine is disconnected from the rest
of the browser, forming a good interception point for enforcing security policies.

Next, we take a brief look at web applications as a combination of web tech-
nologies in Sect. 2.4, followed by the same origin policy in Sect. 2.5, a cornerstone
of web security, which makes sure that web applications remain separated from
each other inside the browser.

A typical web scenario with its actors and interactions, together with the
attacker model we use in this paper, is described in Sect. 2.6.

Third party script inclusion is an integral part of web applications today, at
the cost of having to trust the third party. This trust is not always deserved,
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leading to security problems. The threat posed by third party script inclusions
is motivated in Sect. 2.7.

Finally, in Sect. 2.8, we describe the concept of JavaScript sandboxing as a
means to restrict available functionality inside the JavaScript environment, and
three main ways in which this can be accomplished.

2.1 Browser Architecture

Simply put, a web browser is a computer program used to retrieve content from
the Web, interact with it and display it on a screen, either directly or through
helper applications. More concretely, a web browser is a complex piece of software
comprised of multiple subcomponents, each with its own task, that work together
to allow a user to visit the Web.

Fig. 1. The eight subsystems of the reference architecture of a web browser, from [31].

The reference architecture of a web browser consists of eight interconnected
subsystems [31], shown in Fig. 1:

User Interface. The part of the browser that interacts directly with the user,
displaying windows and toolbars.

Browser Engine. Handles Uniform Resource Identifier (URI a more generic
form of URL) loading, and implements browser actions such as the forward
and backward button behavior. The browser engine provides a high-level
interface to the rendering engine.

Rendering Engine. The subsystem responsible for displaying content on the
screen. It can display HTML and XML, styled with Cascading Style Sheets
(CSS) and embedding images. It also includes the HTML parser, turning
HTML content into the Document Object Model (DOM), a structured form
more suitable for other components. For the sake of compatibility with older
browsers, many HTML parsers also have a quirks mode [5] next to a standards
mode. In standards mode, the HTML parser strictly complies to W3C and
IETF standards and rejects any malformed HTML. In quirks mode however,
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the HTML parser is more lenient and quietly repairs broken HTML instead
of rejecting it.

Networking Subsystem. The part of the browser responsible for communi-
cating with the network over protocols such as HTTP, loading content from
other web servers, caching data and converting data between different char-
acter sets.

JavaScript Interpreter. Also known as the JavaScript engine, this subsystem
parses and executes JavaScript code. JavaScript itself is an object-oriented
programming language that can evaluate expressions, but does not define
ways to influence the rest of the world. To interact with the outside, such as
the other browser components, the user or the network, the JavaScript engine
must communicate with other subsystems.

XML Parser. Parses XML documents into a DOM structure. This component
is different from the HTML parser and is a generic, reusable component. The
HTML parser on the other hand, is optimized for performance and tightly
coupled with the rendering engine.

Display Backend. This component provides an interface to the underlying
operating system to draw windowing primitives and fonts.

Data Persistence. Stores and retrieves data such as browsing history, book-
marks, cookies and browser settings.

The modular subsystems are often reused between different browser vendors.
For instance, the Gecko [64] browser engine is used by Mozilla Firefox, Netscape
Navigator, Galeon [1] and others. Google Chrome uses the Blink [11] browser
engine, also used by Opera [71] and the Android browser [97]. Microsoft Inter-
net Explorer uses the Trident [54] layout engine, also used by the Maxthon [49]
browser. Browser components are not only reused by web browsers. Mozilla
Firefox’s JavaScript engine, SpiderMonkey [80], is also used in the GNOME3
desktop environment [27], and can be used as a standalone JavaScript inter-
preter. Google Chrome’s JavaScript engine, V8 [28], also powers node.js [4], a
server-side JavaScript runtime environment.

Many of these subsystems are used by the browser during routine operations
such as loading and rendering a webpage. When a user points a browser to a
webpage and the browser has downloaded an HTML document, the rendering
pipeline is started that will eventually display the webpage and allow the user
to interact with it.

The rendering pipeline generally consists of 3 steps: parsing, layouting and
rendering:

– During the parsing step, the downloaded HTML document is parsed into a
data structure known as the Document Object Model (DOM) tree. Each node
in this tree comprises an HTML element, with links to the parent element
and sub-elements.

– In the layouting step, rectangular representations of the nodes in the DOM
are arranged according to the styling rules dictated by the webpages and its
Cascading Style Sheets (CSS) information.
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– Finally, in the rendering step, a graphical representation of each HTML ele-
ment in the DOM is painted in its respective rectangular representation, and
finally drawn onto the user’s screen.

This rendering pipeline is a gradual process that is re-iterated while a browser
loads all the needed resources.

2.2 JavaScript

In 1995, Netscape management told Brendan Eich to create a programming lan-
guage to run in the web browser that “looked like Java.” He created JavaScript
in only 10 days [15]. In addition to browser plugins, JavaScript was another
novel feature of Netscape Navigator 2.0 that supported Netscape’s vision of
the Web as a distributed operating system. In contrast with Java, which was
considered a heavyweight object-oriented language and used to create Java
applets, JavaScript would be Java’s “silly little brother” [3], aimed towards non-
professional programmers who would not need to learn and compile Java applets.

Listing 1.1 shows a simple example of JavaScript. When executed, the code
will prompt for the user’s name and birth-year. It will then calculate the user’s
age based on the current year and display it with a greeting using a pop-up.
This JavaScript example makes use of the prompt() function, the Date object
and the alert() function.

When an HTML document is about to be loaded, and before the rendering
pipeline starts, the browser initializes an instance of the JavaScript engine and
ties it uniquely to the webpage about to be loaded.

The webpage’s developer can use JavaScript to interact with this rendering
pipeline by including JavaScript in several ways. JavaScript can be executed
while the pages is loading, using HTML <script> tags. These script tags can
cause the browser to load external JavaScript and execute them inside the web-
page’s JavaScript execution environment. Script tags can also contain inline
JavaScript, which will equally be loaded and executed. HTML provides a way
to register JavaScript event handlers with HTML elements, which will be called
when e.g. an image has loaded, or the user hovers the mousepointer over a hyper-
link. In addition, JavaScript can register these event handlers itself by querying
and manipulating the DOM tree. Events are not only driven by the user, but
can also be driven programmatically. For instance, JavaScript has the ability
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to use a built-in timer to execute a piece of JavaScript at a certain point in the
future. Likewise, the XMLHttpRequest functionality available in the JavaScript
engine allows a web developer to retrieve Internet resources in the background,
and execute a specified piece of JavaScript code when they are loaded. Lastly,
JavaScript has the ability to execute dynamically generated code through the
eval() function.

2.3 JavaScript APIs

JavaScript’s capabilities inside a web page are limited to the APIs that are offered
to it. Typical functionality available to JavaScript in a web page includes manip-
ulating the DOM, navigating the browser and accessing resources on remote
servers.

Fig. 2. Synthesized model of the emerging HTML5 APIs, from [91].

In the new HTML 5 and ECMAScript 5 specifications, JavaScript gains
access to more and powerful APIs. Figure 2 [17] shows a model of some of these
new HTML 5 APIs, which are further explained below.

Inter-frame communication. Facilitates communication between windows
(e.g. between mashup components). This includes window navigation, as well
as Web Messaging (postMessage).

Client-side storage. Enables applications to temporarily or persistently store
data. This can be achieved via Web Storage, IndexedDB or the File API.

External communication. Features such as CORS, UMP, XMLHttpRequest
level 1 and 2, WebSockets, raw sockets and Web RTC (real-time communica-
tion) allow an application to communicate with remote websites.

Device access. Allows the web application to retrieve contextual data (e.g.
geolocation) as well as system information such as battery level, CPU infor-
mation, ambient sensors and high-resolution timers.
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Media. Enable a web application to play audio and video fragments, capture
audio and video via a microphone or webcam and manage telephone calls
through the Web Telephony API.

The UI and rendering. Allow subscription to clipboard and drag-and-drop
events, issuing desktop notifications, allow an application to go fullscreen,
populating the history via the History API and create new widgets with Web
Components API and Shadow DOM.

2.4 Web Applications

A web application combines HTML code, JavaScript and other resources from
several web servers, into a functional application that runs in the browser. Unlike
typical desktop applications which need to be installed on a computer’s hard
disk, web applications are accessible through the web browser from anywhere
and do not need to be installed.

A key component in today’s web application, is JavaScript. JavaScript code
in a web application executes in the browser and can communicate with a web
server, which typically also executes code for the web application.

Consider a website wishing to display the latest tweets from a Twitter feed.
Such a widget can be embedded into a web page, as shown in Fig. 3. Without
a client-side programming language such as JavaScript, the web server from
which this web page is retrieved, could gather and insert the latest tweets at
the moment the web page was requested, and insert them into the web page as
HTML-formatted text. When rendered, the visitor would see the latest tweets,
but they would not update themselves in the following minutes because the web
page is static.

Fig. 3. Example of an embedded live Twitter feed (indicated by the rectangle on the
bottom right), from [90].
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Another option is to use JavaScript on the client-side. When the web page is
requested, the web server can insert JavaScript that regularly requests the latest
tweets from the feed and updates the web page to display them. The result is
an active web page that always displays the latest information.

This example consists of only one HTML page and requests information
from one source. Today’s web has many web applications combining a multitude
of third-party resources. Examples are Facebook, YouTube, Google Maps and
more.

2.5 The Same-Origin Policy

If web applications were allowed complete access to a browser, they would be
able to interfere in the operation of other web applications running in the same
browser. Given the powerful APIs briefly discussed in the previous section, a
web application would be able to access another web application’s DOM, local
storage and data stored on remote servers.

To prevent this, web applications are executed in their own little universe
inside the web browser, without knowledge of each other. The boundaries
between these universes are drawn based on the Same-Origin Policy (SOP) [92].

When the root HTML document of web application is loaded from a certain
URL, the origin of that web application is said to be a combination of the scheme,
hostname and port-number of that URL. For instance, a web application loaded
from https://www.example.com has scheme https, hostname www.example.com
and, in this case implicit, port number 443. The origin for this web application
is thus (https,www.example.com,443) or https://www.example.com:443.

The Same-Origin Policy (SOP) dictates that any code executing inside this
origin only has access to resources from that same origin, unless explicitly
allowed otherwise by e.g. a Cross-Origin Resource Sharing (CORS) [94] pol-
icy. In the previous example, the web application from https://www.example.
com:443 cannot retrieve the address book from a webmail application with dif-
ferent origin https://mail.example.com:443 running in the same browser, unless
the latter explicitly allows it.

The same-origin policy is part of the foundation of web security and is imple-
mented in every modern browser. In this text we only consider the restrictions
imposed by the SOP on the execution of JavaScript.

Insecurely written web applications may allow attackers to breach the same-
origin policy by executing their JavaScript code in that web application’s origin.
Once arbitrary JavaScript code can be injected into a web application, it can
take over control and access all available resources in that web application’s
origin.

Consider a typical webmail application, such as Gmail, allowing an authen-
ticated user to access his emails and contact list. The webmail application offers
a user interface in the browser and can send requests to the webmail server to
send and retrieve emails, and manipulate the contact list.

An attacker may manage to lure an authenticated user of this webmail appli-
cation onto a specially crafted website. This website could try to contact the

https://www.example.com
https://www.example.com:443
https://www.example.com:443
https://www.example.com:443
https://mail.example.com:443
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Fig. 4. A typical web application with third-party JavaScript inclusion. The web appli-
cation running in the browser combines HTML and JavaScript from a trusted source,
with JavaScript from an untrusted source.

webmail server to send and retrieve emails and contact information, just as
the web application would. However, the webmail application’s origin is e.g.
https://webmail.com:443, while the attacker’s website is https://attacker.com:
443. Because of the SOP, JavaScript running on the attacker’s website has no
access to resources of the webmail’s origin.

Now consider what would happen if the webmail application is written inse-
curely, so that an attacker can execute JavaScript in its origin: https://webmail.
com:443. Because the attacker’s code runs inside the same origin as the webmail
application, it has access to the same resources and can also read and retrieve
emails and contact information. Because of the power of JavaScript, an attacker
can do much more. Specially crafted JavaScript can compose spam email mes-
sages and send them out using the victim’s email account, or it could erase the
contact list. It could even download all emails in the mailbox and upload them
to another server.

An attacker with the ability to execute JavaScript in a web application’s
origin can take full control of that web application. In the typical web application
scenario, untrusted JavaScript can be executed in two ways: by including it
legitimately from a third party, or by having it injected through a Cross-Site
Scripting vulnerability in the web application or an installed browser plugin or
extension.

2.6 The Typical Web Scenario and Attacker Model

When discussing Web security, it is important to keep in mind a typical web
application with third-party JavaScript and the actors involved in it. Figure 4
shows such a typical web application where HTML and JavaScript from a trusted

https://webmail.com:443
https://attacker.com:443
https://attacker.com:443
https://webmail.com:443
https://webmail.com:443
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source are combined with JavaScript from an untrusted source. Remember that
all JavaScript, trusted or untrusted, running in a web application’s origin has
access to all available resources.

There are three actors involved in this scenario: The developer of the trusted
web application and the server it is hosted on, the developer of the third-party
JavaScript and the server it is hosted on, and the client’s browser.

Both the client and the trusted web application have a clear motive to keep
untrusted JavaScript from accessing the web application’s resources. The client
will wish to protect his own account and data. The trusted web application has
its reputation to consider and will protect a user’s account and data as well.
Furthermore, the client does not need to steal information from himself and
can use any of his browser’s functionality without needing to use a remote web
application. Likewise, the web application developer owns the origin in which
the web application runs. Stealing data from his own users through JavaScript
is not necessary.

It may be the case that the client has modified his browser and installed
a browser plugin or extension. Such a plugin or extension may be designed to
make the interaction with the web application easier or automated, potentially
circumventing certain defensive measures put in place by the developer of the
web application. In this scenario, the client is still motivated to protect his
account and data, but may be exposing himself to additional threats through
the installed browser plugins or extensions that form additional attack surface.

The third-party script provider however, does not necessarily share the same
desire to protect a user’s data. Even with the best of intentions, a third-party
script provider may be compromised and serving malicious JavaScript without
its knowledge. It may be the case that the script provider has an intrusion-
detection system in place that will detect when it is serving malware, but this
would be wishful thinking. In the worst case, the third-party script provider is
acting maliciously on its own for whatever sinister reason. In any case, the client
and trusted web application cannot trust a third-party script provider with their
secrets.

The attacker model best associated with this actor is the gadget attacker [10].
A gadget attacker is a malicious actor who owns one or more machines on the
Internet, but can neither passively not actively intercept network traffic between
the client’s browser and the trusted web application. Instead, the gadget attacker
has the ability to have the trusted web application’s developer integrate a gadget
chosen by the attacker.

2.7 Third-Party Script Inclusion

Web applications are built from several components that are often included from
third-party content providers. JavaScript libraries like jQuery or the Google
Maps API are often directly loaded into a web application’s JavaScript environ-
ment from third-party script providers.

In a large-scale study of the Web in 2012 [70], Nikiforakis et al. found that
88.45 % of the top 10,000 web sites on the Web, include JavaScript from a
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Fig. 5. Relative frequency distribution of the percentage of top Alexa websites and the
number of unique remote hosts from which they request JavaScript code, from [70].

third-party script provider. Figure 5 shows the distribution of the number of
third-party script providers each web site includes. While about a third include
JavaScript from at most 5 remote hosts, there are also web sites that include
JavaScript from more than 295 different remote hosts.

Including JavaScript from remote hosts implicitly trusts these hosts not to
serve malicious JavaScript. If these third-party script providers are untrustwor-
thy, or if they have been compromised, a web application may end up executing
untrusted JavaScript code.

As an example, consider jQuery, a popular multi-purpose JavaScript library
used on 60 % of the top million websites on the Web [12]. The host distributing
jQuery was compromised in September 2014 [40], giving the attackers the ability
to modify the library and possibly infect many websites that include the library
directly from http://jquery.com. Fortunately, the attackers did not modify the
jQuery library itself, but used the compromised server to spread malware instead.
Although the JavaScript library itself was not tampered with, the jQuery com-
promise indicates the inherent security threat that third-party script inclusions
can pose.

2.8 JavaScript Sandbox

The gadget attacker, as defined in Sect. 2.6, has the ability to integrate a mali-
cious gadget into a trusted web application. This allows the attacker to execute
any chosen JavaScript code in the JavaScript execution environment of this
trusted web application’s origin and access its sensitive resources.

Given this attacker model, we cannot stop the attacker from presenting a
web application user’s browser with chosen JavaScript. In this paper we are not
concerned with cross-site scripting or other injection attacks and assume that the

http://jquery.com


JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 43

attacker already has the ability to execute JavaScript in the JavaScript environ-
ment, no matter through which means this was accomplished. In this scenario,
it would be helpful to have a mechanism to restrict the available functionality
inside the JavaScript environment, according to the least-privilege principle. The
impact of executing (potentially malicious) JavaScript in such an environment
would then be limited to the available functionality. Such an environment, in
which we can isolate JavaScript and restrict its access to certain resources and
functionality, is called a JavaScript sandbox.

From the typical web scenario architecture from Sect. 2.6, keeping in mind
our attacker model, there are only two possible locations that can be considered
to deploy a JavaScript sandboxing mechanism: the trusted web application and
the client’s browser. The third-party script provider is considered untrustworthy.

The developer of the web application and the server hosting it, are trusted
according to the attacker model. This server then offers a possible location to
facilitate JavaScript sandboxing. Before serving the untrusted JavaScript from
the third-party script provider to the client, the code can be reviewed and option-
ally rewritten to make sure it does not abuse the web application’s available
resources.

The client’s browser provides a second location to sandbox JavaScript,
because it is also considered trusted. With direct access to the JavaScript exe-
cution context, a JavaScript sandboxing system located at the client-side has
better means to restrict access to resources and functionality.

JavaScript sandboxing can be achieved by restricting the used JavaScript
language to a subset that can then be verified to be safe, or even rewrite the
JavaScript code into a version which is safe. Such a solution involves a JavaScript
subset and a rewriting mechanism which will be discussed in Sect. 3.

Without restricting or rewriting JavaScript code, JavaScript sandboxing can
be achieved by modifying the environment in which JavaScript executes. Such
a JavaScript sandboxing mechanism can be implemented by modifying the
JavaScript engine in the browser and build in machinery to enforce a certain
policy. This type of JavaScript sandboxing which uses a browser modification
will be discussed in Sect. 4.

Finally, it is also possible to sandbox JavaScript without any language-level
restrictions, rewriting or browser modifications, by repurposing JavaScript func-
tionality to isolate and restrict JavaScript. Such JavaScript sandboxing systems
which do not require browser modifications, are discussed in Sect. 5.

2.9 Conclusion

This section introduced important Web technologies required to understand the
remainder of this text.

Web browsers are used to browse the Web and consist of many different
cooperating subsystems, such as the HTML parser and the JavaScript engine.
Web applications are a combination of HTML pages, JavaScript code and other
resources retrieved from multiple sources running in the browser. Each web
application is isolated and protected in its own origin by the same-origin policy.
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Web applications often include JavaScript code from third-party script providers,
placing often undeserved trust on third parties, who can then execute unre-
stricted JavaScript code in the web application’s origin.

JavaScript sandboxing can limit the functionality available in a JavaScript
environment and we consider three categories which we will discuss in the next
sections: JavaScript subsets and rewriting systems in Sect. 3, JavaScript sand-
boxing using browser modifications in Sect. 4 and JavaScript sandboxing without
browser modifications in Sect. 5.

3 JavaScript Subsets and Rewriting

JavaScript is a very flexible and expressive programming language which
gives web-developers a powerful tool to build web-applications. However, this
same powerful tool is also available to attackers wishing to execute malicious
JavaScript code in a website visitor’s browser.

Moreover, the powerful nature of JavaScript is problematic because it hinders
code verification efforts which could prove safety properties for a given piece of
JavaScript code.

Example: eval(). Consider for instance the JavaScript fragment in Listing 1.2.
When executed in a browser, this code will prompt a user to input a line of text.
The one-way hashing algorithm MD5 is then used to compute a hash of this
line of text. If the hash matches "3b022ec21226e862450f2155ef836827", the
MD5 hash for "alert(‘hello’)", then the line of text is passed to the eval()
function and executed as JavaScript code.

Given that the MD5 hashing algorithm cannot easily be reversed, it is prac-
tically impossible for a code verification tool to automatically determine the
effect of this code, prior to its execution. The eval() function illustrates a fea-
ture of JavaScript which makes code verification difficult because of its dynamic
nature. For this reason, eval() is considered evil [77] and should be used with
the greatest care, or not be used at all.
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Example: Strange Semantics and Scoping Rules. As another example,
the JavaScript fragment in Listing 1.3 illustrates some strange semantic rules
in JavaScript, including the with construct. This particular example showcases
some non-intuitive scoping rules associated with the scope chain. The scope
chain consists of an ordered list of JavaScript objects which are consulted when
unqualified names are looked up at runtime.

Before continuing, the reader is advised to read the code and try to predict
what it will output. The actual output of the code in this example, is listed in
Listing 1.4.

From the output, it appears that both f and x are already defined before
they are even declared, but x has undefined as value. Using with, the user-
defined object o is pushed to the front of the scope chain. The new function f()
is declared, but the subsequent console.log() call seemingly is not aware it.
Instead, the value of f is retrieved from the first object in the scope chain (o),
resulting in 2. Then, a variable var x is declared and assigned 3. The following
console.log() call is aware of this declaration and outputs the correct value.
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Outside the with loop, the object o has changed to reflect the new value of o.x,
but did not record any change to o.f.

The strange behavior in this example indicates that variable and function
declarations have different semantics in JavaScript. The discrepancy between
variable and function declarations can be explained by a process called “variable
hoisting.” Variable hoisting examines the JavaScript code to be executed and
performs all declarations before any code is actually run.

Fig. 6. The scope chain during execution of the example in Listing 1.3. In this depiction,
the scope chain grows down so that newly pushed objects are at the bottom.

A graphical representation of the scope chain during the execution of this
example is shown in Fig. 6 and can be used as a visual aid during the explanation.

Depicted in Fig. 6a is the result of the variable hoisting before any code is
run. The function f() and the variable x are declared on the global object. While
the variable x has value undefined, the function f() is declared and is assigned
its value immediately.

Next, the object o is pushed to the front of the scope chain. The scope chain
right after this push and right before the start of the with construct, is shown
in Fig. 6b. Any unqualified names are now looked up in the variable o.

The third image shown in Fig. 6c, depicts the state of the scope chain at
the end of the with body. Here, the value of the property x of the object o has
changed to 3 because of the assignment. Also note that the value of f has not
changed because variable hoisting declares and initializes a function in a single
step before the code is run, and so outside of the with body.

Finally, in Fig. 6d, the scope chain is restored because the with body ended.
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The strange scoping rules and semantics of with are difficult to reason
about for uninitiated programmers. Widely-acknowledged as being a “JavaScript
wart” [33], it is often recommended to not use the with construct because it may
lead to confusing bugs and compatibility issues [68].

JavaScript Subsets: Verification and Rewriting. The goal of JavaScript
code verification and rewriting is to inspect JavaScript code before it is executed
in a browser, and ensure that it is not harmful.

In the light of the previous examples, it can be desirable to eliminate those
constructs from the JavaScript language that hinder code verification efforts or
cause confusion in general. At the same time, it is also desirable to maintain as
much of the language as possible so that JavaScript is still useful. Such a reduced
version of JavaScript, with e.g. eval() and with construct missing, is called a
JavaScript subset.

The usage of a JavaScript subset must be accompanied by a mechanism which
verifies that a given piece of code adheres to the subset. A deviation from the
subset’s specification can be handled in two ways: rejection and rewriting.

Rejection is the simpler of both options, treating a deviation from the subset
as a hard error and refusing to execute the given piece of code.

Rewriting is a softer alternative, transforming the deviating piece of code into
code which conforms to the subset. Such a rewriting phase can also introduce
extra instrumentation in the code to ensure that the code behaves in a safe way
at runtime.

Interception in a Middlebox. Both the JavaScript subset verification and
rewriting steps necessitate the processing of raw third-party JavaScript code
before it reaches the client’s browser. These steps are to be performed in a
middlebox, a network device that sits on the network path between a client and
a server. Such a middlebox may consist of a physical device unrelated to either
client or server, but it may just as well be collocated with either client or server.

From the attacker model discussed in Sect. 2.6, we can eliminate the third-
party script provider’s site as a possible location to verify and rewrite JavaScript.
We are left with two possible locations for these tasks: the site of the trusted
web application and the client’s site.

A middlebox at the site of the web application, as shown in Fig. 7a,
can equally be implemented as part of a separate network device such as a
load-balancer, reverse proxy or firewall, or can be integrated to be part of the
web-application.

A middlebox at the client’s site, as shown in Fig. 7b, can either be a imple-
mented as a proxy performing the required verification and translation steps, or
as a browser plugin or extension, implementing the proxy’s behavior as part of
the browser.
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Fig. 7. Architectural overview of a setup where a middlebox is used for code verification
and transformation, at the web application site and at the client site.

ECMAScript 5 Strict Mode. ECMAScript 5 strict mode [65], or JavaScript
strict, is a standardized subset of JavaScript with intentionally different seman-
tics than normal JavaScript.

To use strict mode, a JavaScript developer must only place "use strict";
at the top of a script of function body, as shown in Listing 1.5. Strict mode will
then be enforced for that entire script, or only in the scope of that function.
JavaScript strict mode can be mixed with and function together with normal
JavaScript.

Strict mode removes silent failures and turns them into hard errors that throw
exceptions and halt JavaScript execution. For instance, accidentally creating a
global variable by mistyping a variable name, will throw an error. Likewise,
overwriting a non-writable global variable like NaN or defining an object with a
duplicate key, causes strict mode to throw errors.

Strict mode simplifies variable names and allows better JavaScript engine
optimization by removing the with construct. Through this construct, JavaScript
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engine optimizations may be confused about the actual memory location of a
variable. In addition, strict mode changes the semantics of eval() so that it can
no longer create variable in the surrounding scope.

Strict mode also introduces some fixes with regard to security. It is no longer
possible to access the global object through the this keyword, preventing unfore-
seen runtime leaks. It is also no longer possible to abuse certain variables to walk
the stack or access the caller from within a function.

Finally, strict mode forbids the use of some keywords that will be used in future
ECMAScript versions, such as private, public, protected, interface, . . .

Research in the area of JavaScript subsets and rewriting systems includes
BrowserShield [76], CoreScript [99], ADsafe [16], Facebook JavaScript [88],
Caja [60], Jacaranda [36], Microsoft Live Websandbox [58], Jigsaw [53],
Gatekeeper [32], Blancura [25], Dojo Secure [42], . . . The remainder of this section
discusses a selection of work on JavaScript subsets and rewriting systems.

3.1 BrowserShield

Reis et al. have developed BrowserShield, a dynamic instrumentation system for
JavaScript. BrowserShield parses and rewrites HTML and JavaScript in a mid-
dlebox, rewriting all function calls, property accesses, constructors and control
structures to be relayed through specialized methods of the bshield object. A
client-side JavaScript library then inserts this bshield object, which mediates
access to DOM methods and properties according to a policy, into the JavaScript
execution environment before any scripts run.

BrowserShield aims at preventing the exploitation of browser vulnerabili-
ties, such as MS04-40 [56], a buffer overflow in the Microsoft Internet Explorer
browser caused by overly long src and name attributes in certain HTML ele-
ments. To shield the browser from attacks against these vulnerabilities, Browser-
Shield rewrites both HTML and JavaScript, transforming them to filter out any
detected attacks. BrowserShield does not use a JavaScript subset, because it
needs to be able to rewrite any HTML and JavaScript found on the Internet to
be effective.

Although sandboxing is not the main goal of BrowserShield, its rewriting
mechanism provides all the necessary machinery to accomplish this goal by
tuning the policy. For instance, BrowserShield could have a policy in place
to mediate access to the sensitive eval() function. Listing 1.6 shows the out-
put of BrowserShield’s rewriting mechanism on a JavaScript example using the



50 S. Van Acker and A. Sabelfeld

eval() function. After the rewriting step, any call to eval() in the original code
is relayed through the bshield object, which can mediate access at runtime.

A prototype of BrowserShield was implemented as a Microsoft ISA Server
2004 [55] plugin for evaluation. The plugin in this server-side middlebox is
responsible for rewriting HTML and script elements, and injecting the Browser-
Shield client-side JavaScript library which implements the bshield object
and redirects all JavaScript functionality through it. BrowserShield worked as
expected during evaluation. The performance evaluation indicated a maximum
slowdown of 136x on micro-benchmarks, and on average 2.7x slowdown on ren-
dering a webpage.

3.2 ADsafe

The ADsafe subset, developed by Douglas Crockford, is a JavaScript subset
designed to allow direct placement of advertisements on webpages in a safe way,
while enforcing good coding practices. It removes a number of unsafe JavaScript
features and does not allow uncontrolled access to unsafe browser components.

Examples of the removed unsafe JavaScript features are: the use of global
variables, the use of this, eval(), with, using dangerous object properties like
caller and prototype. ADsafe also does not allow the use of the subscript
operator, except when it can be verified that the subscript is numerical, e.g. a[i]
is not allowed but a[+i] is allowed because +i will always produce a number.
In addition, ADsafe removes all sources of non-determinism such as Date and
Math.random().

To make use of ADsafe, widgets must be loaded and executed via the
ADSAFE.go() method. These widgets must adhere to the ADsafe subset,
although there is no verification built into ADsafe. Instead, it is recommended
to verify subset adherence in any stage of the deployment pipeline with e.g.
JSLint [2], a JavaScript code quality verification tool.

ADsafe does not allow JavaScript code to make use of the DOM directly.
Instead, ADsafe makes a dom object available which provides and mediates access
to the DOM.

No performance evaluation has been published about ADsafe by its author,
who claim that ADsafe “will not make scripts bigger or slower or alter their
behavior” [16]. This claim applies if advertisement scripts are written in the
ADsafe subset directly, and not translated from full JavaScript.

Research on ADsafe has revealed several problems and vulnerabilities, which
allow leaking the document object [83], launch a XSS attack [25], allow the guest
to access properties on the host page’s global object [75], prototype poisoning [47]
and more.

3.3 Facebook JavaScript

Facebook JavaScript (FBJS) is a subset of JavaScript and part of the Facebook
Markup Language (FBML) which was used to publish third-party Facebook
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applications on the Facebook servers. FBJS was designed to allow web applica-
tion developers as much flexibility as possible while at the same time protecting
site integrity and the privacy of Facebook’s users.

The FBJS subset excludes some of JavaScript’s dangerous constructs such as
eval(), with, parent , constructor and valueOf(). A preprocessor rewrites
FBJS code so that all top-level identifiers in the code are prefixed with an
application-specific prefix, thus isolating the code in its own namespace.

Special care is also taken with e.g. the use of this and object indexing
to retrieve properties, making sure that a Facebook application cannot break
out of its namespace. The semantics of ithis are dependent on the way and
location that it is used. A code fragment such as the one listed in Listing 1.7
can return the global object, allowing FBJS code to break out of its namespace.
To remedy this problem, the FBJS rewriter encloses all references to this with
the function ref(), e.g. ref(this). This ref() function verifies the way in
which it is called at runtime, and prevent FBJS code from breaking out of its
namespace. Similarly, the FBJS rewriter also encloses object indices such as
property in object["property"] with idx("property") to also prevent that
this is bound to the global object.

Research on FBJS has revealed some vulnerabilities [46,47], which were
addressed by the Facebook team.

Maffeis et al. [47] discovered that a specially crafted function can retrieve
the current scope object through JavaScript’s exception handling mechanism,
allowing the ref() and idx() functions to be redefined. This redefinition in turn
allows a FBJS code to break out of its namespace and take over the webpage.

After Facebook fixed the previous issues, Maffeis et al. [46] discovered another
vulnerability which allows the global object to be returned on some browsers,
by tricking the fixed idx() function to return an otherwise hidden property,
through a time-of-check-time-of-use vulnerability [62].

3.4 Caja

Google’s Caja, short for Capabilities Attenuate JavaScript Authority, is a
JavaScript subset and rewriting system using a server-side middlebox. Caja rep-
resents an object-capability safe subset of JavaScript, meaning that any code
conforming to this subset can only cause effects outside itself if it is given ref-
erences to other objects. In Caja, objects have no powerful references to other
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objects by default and can only be granted new references from the outside. The
capability of affecting the outside world is thus reflected by holding a reference
to an object in that outside world.

The Caja subset removes some dangerous features from the JavaScript lan-
guage, such as with and eval(). Furthermore, Caja does not allow variables
or properties with names ending in “ ” (double-underscore), while at the same
time marking variables and properties with names ending in “ ” as private.

Caja’s rewriting mechanism, known as the “cajoler,” examines the guest code
to determine any free variables and wraps the guest code into a function without
free variables. Listing 1.8 shows some example code and its cajoled form is shown
in Listing 1.9 (the cajoledcode variable). In addition, Caja adds inline checks
to make sure that Caja’s invariants are not broken and that no object references
are leaked. The output of the cajoler is cajoled code, which is sent to a client’s
browser.

On the client-side, objects from the host webpage are “tamed” so that they
only expose desired properties before being passed to the cajoled guest code.
These tamed objects with carefully exposed properties are the only references
that cajoled code obtains to the host page. In this way, all accesses to the DOM
can be mediated by taming the global object before passing it to cajoled code.
Listing 1.9 shows how the window object is tamed and passed to the cajoled
form of Listing 1.8.

3.5 Discussion

The JavaScript language makes static code verification difficult, because of its
dynamic nature (e.g. eval()) and strange semantics (e.g. the with construct).
JavaScript subsets eliminate some of JavaScript’s language constructs so that
code may be more easily verified. When required, JavaScript rewriting systems
can transform the code so that policies can also be enforced at runtime.

This section discussed four JavaScript subsets and rewriting mechanisms:
BrowserShield, ADsafe, Facebook JavaScript and Caja. Some of their features
are summarized in Table 1.
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It is noteworthy that all three JavaScript subsets remove with and eval()
from the language, which is in line with the standardized JavaScript strict
mode subset. The only available performance benchmarks are for BrowserShield,
which rewrites code written in full JavaScript, and indicate a heavy perfor-
mance penalty when rewriting JavaScript in a middlebox. Furthermore, the list
of known weaknesses suggest that creating a secure JavaScript subset, although
possible, is not an easy task.

JavaScript subsets and code rewriting have been used in real world web
applications and have proved to be effective in restricting available functional-
ity to selected pieces of JavaScript code. However, restricting the integration of
third-party JavaScript code which conforms to a specific JavaScript subset, puts
limitations on third-party JavaScript library developers which they are unlikely
to follow without incentive. Even if these developers are willing to limit them-
selves to a JavaScript subset, they would need to create a version of their code
for every subset that they need to conform too. For instance, the jQuery devel-
opers would need to create a specific version for use with FBJS, Caja, ADsafe
etc. This is an unrealistic expectation.

The standardization of a JavaScript subset, such as e.g. strict mode, helps
eliminate this disadvantage for third-party JavaScript providers. But even with
a standardized JavaScript subset to aid with code verification, this verification
step itself must still happen in a middlebox located at either the server-side or
the client-side.

Opting for a middlebox on a server-side has the disadvantage that it changes
the architecture of the Internet. From the browser’s perspective, JavaScript code
would need to be requested from the middlebox instead of directly downloading it
from the third-party script provider. Although this poses no problem for generic
JavaScript libraries such as jQuery, it does pose a problem for JavaScript code
which is generated dynamically depending on the user’s credentials, as is the
case with e.g. JSONP. In the latter case the third-party script provider might
require session information to prove a user’s identity, which will not be provided
by the browser when requesting said script from a server-side middlebox.

A client-side middlebox on the other hand, does not suffer from this par-
ticular problem because it has the option of letting the browser connect to it
transparently, e.g. in case of a web proxy. With a client-side middlebox, the web
application developers lose control over the rewriting process. Users of the web
application should setup the middlebox on the client-side in order to make use
of this web application. But requiring users to install a middlebox next to their
browser for a single web application, hurts usability and puts a burden on users
which they might not like to carry.

From a usability viewpoint, it makes more sense to require only a single
middlebox which can be reused for multiple web applications and to integrate
this client-side middlebox into the browser somehow.
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4 JavaScript Sandboxing Using Browser Modifications

The previous section showed that JavaScript contains several language con-
structs that cannot easily be verified to be harmless before executing JavaScript
code. Instead of verifying the code beforehand, another approach is to control
the execution of JavaScript at runtime and monitor the effect of the executing
JavaScript to make sure no harm is done.

In a typical modular browser architecture of a browser, as explained in
Sect. 2.1, the JavaScript environment is disconnected from other browser com-
ponents. These other components, such as the DOM, the network layer, the ren-
dering pipeline or HTML parser are not directly accessible to JavaScript code
running in the JavaScript environment. Without these components, JavaScript
is effectively side-effect free and is unable to affect the outside world.

The connection layer between the JavaScript engine and the different browser
components, is an excellent location to mediate access to the powerful function-
ality that these components can provide. In order to enforce a policy at this
location, the browser must be modified with a mechanism that can intercept,
modify and block messages between the JavaScript engine and the different com-
ponents.

Example: Allowing only Function Object Parameters for setTimeout().
Consider the example in Listing 1.10. In this example, the DOM API func-
tion setTimeout() is called with a parameter x. The specification for the
setTimeout() function in the Web application API standard [98] lists two ver-
sions: a version where x must be a Function object, and a version that allows it
to be a String. Passing a string to the setTimeout() function is regarded as a
bad coding practice and considered as evil as using eval() [41]. Because of the
inherent difficulty in verifying JavaScript code before runtime, it can be desir-
able to enforce a policy at runtime which rejects calls to setTimeout() when a
string is passed as an argument.

The setTimeout() function is provided by a browser component which
implements timer functionality. To access this function, the JavaScript engine
must send a message to this component to invoke the timer functionality, as
shown in Fig. 8. At this point, a browser modified with a suitable policy enforce-
ment mechanism can intercept the message, and reject it if the given parameter
is not a Function object.

Forms of Browser Modifications. Browser modifications can take many
forms, but they can generally be split into three groups: browser plugins, browser
extensions and browser core modifications.
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Fig. 8. Executing the setTimeout() function will send a message from the JavaScript
environment to the component implementing timer functionality, which can be inter-
cepted, modified or rejected by a policy enforcement mechanism in a modified browser.

Browser plugins and browser extensions can add extra functionality to the
browser that can be used to enforce a JavaScript sandboxing technique. They are
however limited in the modifications they can make in the browser environment.

For more advanced modifications to the browser, such as e.g. the JavaScript
engine or the HTML parser, it is typically the case that neither plugins nor
extensions are suitable. Therefor, modifying the browser core itself is required.

Research on JavaScript sandboxing through some form of browser mod-
ification, includes BEEP [38], ConScript [51], WebJail [91], Contego [45],
AdSentry [19], JCShadow [72], Escudo [37], JAMScript [39], . . .

4.1 Browser-Enforced Embedded Policies (BEEP)

Jim et al. introduce Browser-Enforced Embedded Policies, a browser modi-
fication that introduces a callback mechanism, called every time JavaScript
is about to be executed. The callback mechanism provides a hook named
afterParseHook inside the JavaScript environment, which can be overridden
by the web developer.

Every time a piece of JavaScript is to be executed, the browser calls the
afterParseHook callback to determine whether the piece of JavaScript is allowed
to execute or not. To be effective, BEEP must be the first JavaScript code to
load in the JavaScript environment, in order to set up the afterParseHook
callback.
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The authors experimented with two types of policies: whitelisting and DOM
sandboxing.

In the whitelisting policy approach, illustrated in Listing 1.11, the
afterParseHook callback function receives the script to be executed, and hashes
is with the SHA-1 hashing algorithm. This hash is then compared with a list
of hashes for allowed scripts. If the hash is found among this whitelist, the
afterParseHook callback returns true and the script is executed.

In the DOM sandboxing policy approach, illustrated in Listing 1.12, HTML
elements in the web page are clearly marked with a noexecute attribute if they
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can potentially contain untrusted content such as third-party advertising. When
a script is about to be executed, the afterParseHook callback function receives
both the script and the DOM element from which the execution request came.
The afterParseHook callback function then walks the DOM tree, starting from
the given DOM element and following the references to parent nodes. For each
DOM node found in this walk, the callback function checks for the presence of a
noexecute attribute. If such an attribute is found, the afterParseHook callback
function returns false, rejecting script execution.

The authors report two problems with this last approach. First, in an attack
to which the authors refer to as “node-splitting,” an attacker may write HTML
code into the webpage, allowing him to break out of the enclosing DOM element
on which a noexecute attribute is placed. Shown in Listing 1.13, an attacker
could easily break out of the DOM sandboxing policy by closing and opening the
enclosing <div> tag which has the noexecute attribute set, hereby escaping its
associated policy of rejecting untrusted scripts. Second, an attacker can introduce
an HTML frame, which creates a child document. The afterParseHook callback
function inside this child document would not be easily able to walk up the
parent’s DOM tree to check for noexecute attributes.

BEEP was implemented in the Konqueror and Safari browsers, and partially
in Opera and Firefox. Performance evaluation indicates an average of 8.3 % and
25.7 % overhead on the loadtime of typical webpages for a whitelist policy and
DOM sandboxing policy respectively.

4.2 ConScript

Meyerovich et al. present ConScript, a client-side advice implementation for
Microsoft Internet Explorer 8. ConScript allows a web developer to wrap a func-
tion with an advice function using around advice. The advice function is regis-
tered in the JavaScript engine as deep advice so that it cannot be altered by an
attacker.

As with BEEP, ConScript’s policy enforcement mechanism must be config-
ured before any untrusted code gains access to the JavaScript execution envi-
ronment. ConScript introduces a new attribute policy to the HTML <script>
tag, in which a web developer can store a policy to be enforced in the current
JavaScript environment. When the web page is loaded, ConScript parses this
policy attribute and registers the contained policy.

Unlike shallow advice, which is within reach of attackers and must be secured
in order to prevent tampering by an attacker, ConScript registers the advice
function as “deep advice” inside the browser core, out of reach of any potential
attacker.
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Listing 1.14 shows a ConScript policy being defined in the head of a web
page. The policy in this particular example enforces the usage of “HttpOnly” [57]
cookies, a version of HTTP cookies which cannot be accessed by JavaScript. To
achieve this goal, the policy defines a function HttpOnly which simply throws
an exception, and registers this function as “around” advice on the getter and
setter of the cookie property of the document object, from which regular cookies
are accessible in JavaScript.

Using around advice as an advice function allows a policy writer full freedom
to block or allow a call to an advised function, possibly basing the decision on
arguments passed to the advised function at runtime.

ConScript uses a ML-like subset of JavaScript with labeled types and formal
inference rules as its policy language, which can be statically verified for common
security holes. To showcase the power of ConScript and its policy language, the
authors define 17 example policies addressing a variety of observed bugs and
anti-patterns, such as: disallowing inline scripts, restricting XMLHttpRequests
to encrypted connections, disallowing cookies to be leaked through hyperlinks,
limiting popups and more.

ConScript was implemented in Microsoft Internet Explorer 8 and its perfor-
mance evaluated. On average, ConScript introduces a slowdown during micro-
benchmarks of 3.42x and 1.24x after optimizations. The macro-benchmarks are
reported to have negligible overhead.

4.3 WebJail

Van Acker et al. propose WebJail, a JavaScript sandboxing mechanism which
uses deep advice functions like ConScript.

In WebJail, HTML iframe elements are used as the basis for a sandbox. A
new policy attribute for an iframe element allows a web developer to specify
the URL of a WebJail policy, separating concerns between web developers and
policy makers.

The authors argue that an expressive policy language such as ConScript’s
can cause confusion with the integrators who need to write the policy, thus
slowing the adoption rate of a sandboxing mechanism. In addition, they warn
for a scenario dubbed “inverse sandbox,” in which the policy language is so
expressive that an attacker may use it to attack a target web application by
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sandboxing it with a well-crafted policy. For instance, if the policy language is
the JavaScript language, an attacker may define a policy on an iframe to inter-
cept any cookie-access and transmit these cookies to an attacker-controlled host.
A target web-application could then be loaded into this iframe and would, upon
accessing its own cookies, trigger the policy mechanism which leaks the cookies
to the attacker.

To avoid this scenario, WebJail abstracts away from an overly expressive
policy language and defines its own secure composition policy language. Based
on an analysis of sensitive JavaScript APIs in the HTML5 specifications, the
authors divided the APIs into nine categories. The policy consists of a file writ-
ten in JSON, describing access rights for each of these categories. Access to
a category of sensitive JavaScript APIs in WebJail can be granted or rejected
with "yes" or "no", or determined based on a whitelist of allowed parameters.
Listing 1.15 shows an example WebJail policy which allows inter-frame communi-
cation ("framecomm": "yes"), external communication to Google and YouTube
("extcomm": ["google.com", "youtube.com"]), but disallowing access to the
Device API ("device": "no").

WebJail’s architecture, depicted in Fig. 9 consists of three layers to process
an integrator’s policy and turn it into deep advice. The policy layer reads an
iframe’s policy and combines with the policies of any enclosing iframes. Policy
composition is an essential step to ensure that an attacker cannot easily escape
the sandbox by creating a child document without a policy defined on it. The
advice construction layer processes the composed policy and creates advice func-
tions for all functions in the specified JavaScript APIs. Finally, the deep aspect
weaving layer combines the advice functions with the API functions, turning
them into deep advice and locking them safely inside the JavaScript engine.

WebJail was implemented in Mozilla Firefox 4.0b10pre for evaluation. The
performance evaluation indicated an average of between 6.4 % and 27 % for
micro-benchmarks and an average of 6 ms loadtime overhead for macro-
benchmarks.

4.4 Contego

Luo et al. design and implement Contego, a capability-based access control sys-
tem for browsers.
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Fig. 9. The WebJail architecture consists of three layers: the policy layer, the advice
construction layer and the deep aspect weaving layer, from [91].

In a capability-based access control model, the ability of a principal to per-
form an action is called a capability. Without the required capability, the prin-
cipal cannot perform the associated action.

Contego’s authors identified a list of capabilities in browsers, among which:
performing Ajax requests, using cookies, making HTTP GET requests, click-
ing on hyperlinks, . . . . They list three types of actions that can be associated
with those capabilities, based on where they originate: HTML-induced actions,
JavaScript-induced actions and event-driven actions.

Contego allows a web developer to assign capabilities to <div> elements
in the DOM tree, by assigning a bit-string to the cap attribute. Each bit in
the bit-string indicates whether a certain capability should be enabled ("1") or
disabled ("0") for all DOM elements enclosed by the <div> element on which
the capabilities apply. The meaning of each bit in the bit-string is shown in
Listing 1.16, which also shows an example policy disabling access to cookies.
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The authors warn about a node-splitting attack when an attacker is allowed
to insert content into a <div> element. Just as with BEEP’s DOM sandboxing
policy, care should be taken to avoid that an attacker can insert a closing tag
and escape the policy. In addition, Contego has measures in place to ensure
that an attacker cannot override capability restrictions by e.g. setting a new cap
attribute either in HTML or in JavaScript. Cases where principals with different
capabilities interact are handled by restricting the actions to the conjunction of
the capability sets.

To implement Contego in the Google Chrome browser, the authors extended
the browser with two new components: the binding system and the enforcement
system. The binding system assigns and tracks individual principal’s capabilities
within a webpage. The enforcement system then uses the information from the
binding system to allow or deny actions at runtime.

The performance evaluation shows an average overhead of about 3 % on
macro-benchmarks.

4.5 AdSentry

Dong et al. propose AdSentry, a confinement solution for JavaScript-based adver-
tisements, which executes the advertisements in a special-purpose JavaScript
engine.

An architectural overview of AdSentry is shown in Fig. 10. Next to the regular
JavaScript engine, AdSentry implements an additional JavaScript engine, called
the shadow JavaScript engine, as a browser plugin. The browser plugin is built
on top of the Native Client (NaCl) [30] sandbox, which protects the browser

Fig. 10. The AdSentry architecture: advertisements are executed in a shadow
JavaScript engine which communicates with the Page Agent via the policy enforcer,
from [19].
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and the rest of the operating system from drive-by-download attacks occurring
inside the sandbox.

Advertisements can either be explicitly marked for use with AdSentry, or
they can be automatically detected by AdBlock Plus. When an advertisement is
detected in a webpage, AdSentry assigns it a unique identifier and communicates
with the shadow JavaScript engine to request that the code be executed there.
The shadow JavaScript engine then creates a new JavaScript context with its
own global object and virtual DOM and executes the advertisement.

The virtual DOM inside the shadow JavaScript context has no access to the
real webpage on which the advertisement is supposed to be rendered. Instead,
the methods of the virtual DOM are stubs which trigger the shadow JavaScript
engine to communicate with a Page Agent in the real JavaScript engine, request-
ing access on behalf of the advertisement. The communication between the Page
Agent and the shadow JavaScript engine is facilitated with a data exchange pro-
tocol, shown in Listing 1.17. This communication channel is also where AdSen-
try’s enforcement mechanism operates, granting or blocking access to the real
webpage’s DOM according to a user-specified policy. No information is given on
how this policy can be specified.

AdSentry was implemented in Google Chrome, and uses a standalone ver-
sion of SpiderMonkey, Mozilla’s JavaScript engine, as the shadow JavaScript
engine. The performance evaluation indicates an average overhead of 590x on
micro-benchmarks when traversing the boundary between the shadow JavaScript
engine and the Page Agent, and an around 3 % to 5 % overall loadtime overhead
on macro-benchmarks.

4.6 Discussion

This section discussed five browser modifications that aim to isolate and restrict
JavaScript code in the web browser: BEEP, ConScript, WebJail, Contego and
AdSentry. Some of their features are summarized in Table 2.

JavaScript sandboxing through a browser modification allows the integration
of third-party scripts written in the full JavaScript language. Web applications
can be built with a much richer set of JavaScript libraries, since those JavaScript
libraries are not confined to a subset of JavaScript.

In addition, a browser modification can control the execution of JavaScript
inside the browser, allowing the construction of efficient custom-built machinery
to enforce a sandboxing policy, ensuring low overhead.
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However, modified browsers pose a problem with regard to dissemination of
the software and compatibility with browsers and browser versions. End-users
must take extra steps in order to enjoy the protection of this type of JavaScript
sandboxing systems.

Because end-users do not all use the same browser, it becomes impossible to
assure that all end-users can keep using their own favorite browser. In the most
fortunate case, the developers of this browser core modification may find a way
to port their sandboxing system to all browsers. Even if this is the case, a browser
core modification is a fork in a browser’s code base and must be maintained to
keep up with changes in the main code base, which can be a significant time
investment.

Likewise, a browser plugin or extension implementing a certain JavaScript
sandboxing system, must also be created for all browser vendors and versions, to
enable a wide range of users to make use of it. Such a plugin or extension must
equally be maintained for future releases of browsers, which can also require a
significant time investment.

All in all, modifying a browser through a fork of browser code, a browser
plugin or a browser extension in order to implement a JavaScript sandboxing
system, is acceptable for a prototype, but proves difficult in a production envi-
ronment.

An alternative approach is to convince major browser vendors to implement
the browser modification as part of their main code base, or even better, pass it
through the standardization process so that all browser vendors will implement
it. This approach will ensure that the sandboxing technique ends up in a user’s
favorite browser automatically and that the code base is maintained by the
browser vendors themselves.

Unfortunately, getting a proposal accepted by the standardization commit-
tees is not a straightforward task, partly because no solution is widely accepted
as being “The Solution.”

In recent years, the standardization process has yielded new and power-
ful functionality that could be used to build a JavaScript sandboxing system.
Through this approach, a JavaScript sandboxing system would not need any
browser modification at all and work out of the box on all browsers that support
the latest Web standards.

5 JavaScript Sandboxing Without Browser Modifications

The previous section showed that a sandboxing mechanism implemented as a
browser modification, can be used to restrict JavaScript functionality available
to untrusted code at runtime. A browser modification is useful for proof-of-
concept evaluation of a sandboxing mechanism, but proves problematic in a
production environment. Not only must a browser modification be maintained
with new releases of the browser on which it is based, but end-users must also
be convinced to install the modified browser, plugin or extension.



66 S. Van Acker and A. Sabelfeld

Given the powerful nature of JavaScript, it is possible to isolate and restrict
untrusted JavaScript code at runtime, without the need for a browser modifi-
cation. This approach is challenging because the enforcement mechanism will
execute in the same execution environment as the untrusted code it is trying to
restrict. Special care must be taken to ensure that the untrusted code cannot
interfere with the enforcement mechanism, and this without any added function-
ality to protect itself from the untrusted code.

Isolation Unit and Communication Channel. Following the same rationale
as in the previous section, a good approach is to create an isolated unit (or
sandbox) which is completely cut off from any sensitive functionality, reducing
it to a side-effect free execution environment. Figure 11 sketches the relationship
between a sandbox and the real JavaScript environment.

Fig. 11. Relationship between the real JavaScript environment and a sandbox. The
sandbox can only interact with a Virtual DOM, which forwards it via the policy enforcer
to the real DOM.

Any untrusted code executed in the sandbox, will not be able to affect the
outside world, except through a virtual DOM introduced into this sandbox.
To access the outside world, the isolated code must make use of the virtual
DOM, which will forward the access request over a communication channel to
an enforcement mechanism. If the access is allowed, the enforcement mechanism
again forwards the access request to the real JavaScript environment.

New and Powerful ECMAScript 5 Functionality. The rise of Web 2.0
resulted in the standardization of ECMAScript 5, which brought new and pow-
erful functionality to mainstream browsers. This new functionality can help with
the isolation and restriction of untrusted JavaScript code.

An example of such functionality is the WebWorker API, or WebWorkers [93].
WebWorkers allow web developers to spawn background workers to run in par-
allel with a web page. These workers are intended to perform long-running com-
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putational tasks in the background, while keeping web pages responsive to user
interaction.

WebWorkers have a very restricted API available to them, which only allows
them to do very basic tasks such as set timers, perform XMLHttpRequests
or communicate through postMessage(). In particular, WebWorkers have no
access to the DOM. Communication between WebWorkers and a web page is
achieved through the postMessage API.

Having new ECMAScript 5 functionality in place in browsers today,
opens new options for JavaScript sandboxing mechanisms which previously
required browser modifications or code verification/transformation in a separate
middlebox.

For instance, because WebWorkers restrict JavaScript code from accessing
the DOM and other sensitive JavaScript functionality, they can be used as the
isolation unit for a JavaScript sandboxing mechanism. TreeHouse, discussed far-
ther in this section, uses WebWorkers as its isolation unit.

Research on JavaScript sandboxing without browser modification includes
Self-protecting JavaScript [48,74], AdJail [84], Object Views [50], JSand [6],
TreeHouse [35], Privilege-separated JavaScript [7], SafeScript [85], Pivot [52],
IceShield [34], SafeJS [14], Two-tier sandbox [73], Virtual Browser [13], . . . A
selection of this work is discussed in the following sections.

5.1 Self-Protecting JavaScript

Phung et al. propose a solution where DOM API functions are replaced by wrap-
pers which can optionally call the original functions, to which the wrapper has
unique access. The wrappers can be used to enforce a policy and, with the abil-
ity to store state inside the wrapper function’s scope, allow the enforcement of
very expressive policies. Access to sensitive DOM properties can also be limited
by defining a getter and setter method on them which implements a restricting
policy.



68 S. Van Acker and A. Sabelfeld

An example of how a DOM function is replaced with a wrapper, is shown
in Listing 1.18. In this example, a wrapper for the function alert() is created
with a built-in policy to only allow the function to be called twice. A reference
to the original native implementation of alert() is kept inside the wrapper’s
scope chain, making it only accessible by the wrapper itself. Finally, the original
alert() function is replaced by the wrapper.

It is vital that the wrappers are created and put in place of the original DOM
functions before any other JavaScript runs inside the JavaScript environment,
to achieve full mediation. If any untrusted JavaScript code is run before the
wrappers are in place, an attacker may keep copies of the original DOM functions
around, thus bypassing any policies that are placed on them later.

The authors warn that references to DOM functions can also be retrieved
through the contentWindow property of newly created child documents. To pre-
vent this, access to the contentWindow property is denied.

A bug in the delete operator of older Firefox browsers also allows overwritten
DOM functions to be restored to references to their original native implementa-
tions, by simply deleting the wrappers.

A performance evaluation of Self-protecting JavaScript revealed a average of
6.33x slowdown on micro-benchmarks, and a 5.37 % average overhead for macro-
benchmarks.

Magazinius et al. [48] analyzed Self-protecting JavaScript and uncovered sev-
eral weaknesses and vulnerabilities that allow the sandboxing mechanism to be
bypassed by an attacker.

They note that the original implementation does not remove all references to
DOM functions from the JavaScript environment, leaving them open to abuse
from attackers. The alert() function for instance, has several aliases (such as
window. proto .alert()), which must all be replaced with a wrapper for Self-
protecting JavaScript to be effective.

Equally, simply denying access to the contentWindow property is not suffi-
cient to prevent references to DOM functions from being retrieved from child
documents. These references can also be access from child documents through
the frames property of the window object, or from the parent document through
the parent property of the window object.

They also point out that Self-protecting JavaScript is vulnerable to several
types of prototype poisoning attacks, allowing an attacker to get access to the
original, unwrapped DOM functions as well as the internal state of a policy
wrapper.

Lastly, they remind that an attacker could abuse the caller chain during a
wrapper’s execution, by gaining access to the non-standard caller property
available in functions, allowing an attacker to gain access to the unwrapped
DOM functions.

Finally, Magazinius et al. offer solutions to remedy these vulnerabilities
by making sure any functions and objects used inside a wrapper are discon-
nected from the prototype chain to prevent prototype poisoning, and coercing
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parameters of functions inside wrappers to their expected types in order to fur-
ther reduce the attack surface.

5.2 AdJail

Ter Louw et al. propose AdJail, an advertising framework which enforces
JavaScript sandboxing on advertisements.

AdJail allows a web developer to restrict what parts of the web page an
advertisement has access to, by marking HTML elements in that web page with
the policy attribute. This policy attribute contains the AdJail policy that is
in effect for a certain HTML element and its sub-elements.

The AdJail policy language allows the specification of what HTML elements
can be read or written to, and whether that access extends to its sub-elements.
The web developer can also define a policy to enable or disable images, Flash or
iframes, restrict the size of an advertisement to a certain height and width and
allow clicked hyperlinks to open web pages in a new window.

By default, an advertisement is positioned in the “default ad zone,” an HTML
<div> element that aids the web developer in positioning the advertisement in
the web page. The default policy is set to “deny all.”

An overview of AdJail is shown in Fig. 12. The advertisement is executed in
a “shadow page,” which is a hidden iframe with a different origin, so that it is
isolated from the real web page. Those parts of the real web page’s DOM that
are marked as readable by the advertisement, are replicated inside the shadow
page before the advertisement executes.

Changes made by the advertisement inside the shadow page, are detected
by hooking into the DOM of the shadow page, and communicated to the real
page through a tunnel script. The changes are replicated on the real page if

Fig. 12. Overview of AdJail, showing the real page, the shadow page and the tunnel
scripts through which they communicate and on which the policy is enforced, from [84].
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allowed by the policy. Likewise, events generated by the user on the real page,
are communicated to the shadow page so that the advertisement can react to
them.

Because AdJail is aimed at sandboxing advertisements, special care must be
taken to ensure that the advertisement provider’s revenue stream is not tampered
with. In particular, AdJail takes special precautions to ensure that content is
only downloaded once, to avoid duplicate registration of “ad impressions” on
the advertisement network. Furthermore, AdJail leverages techniques used by
BLUEPRINT [86] to ensure that an advertisement does not inject scripts into
the real webpage.

Performance benchmarks indicate that AdJail has an average overhead of
29.7 % on ad rendering, increasing the rendering time from an average of 374 ms
to 532 ms. Further analysis showed that AdJail has an average overhead of 25 %
on the entire page loadtime, increasing it from 489 ms to 652 ms.

5.3 Object Views

Meyerovich et al. introduce Object Views, a fine grained access control mecha-
nism over shared JavaScript objects.

An “Object View” is a wrapper around an object that only exposes a subset
of the wrapped object’s properties to the outside world. The wrapper consists
of a proxy between the wrapped object and the outside world, and a policy that
determines what properties should be made available through the proxy.

Sketched in Listing 1.19, an Object View contains a getter and setter
method for each property on the wrapped object, and a proxy function for each
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function object. Writing a value to a property on an Object View, triggers the
setter function which may eventually write the value to the wrapped object’s
respective property. The getter function works in a similar way for reading prop-
erties. Using a property of an Object View as a function and calling it, triggers
the proxy function. Object Views are applied recursively to a proxy function’s
return value.

Creating two Object Views that wrap the same object, poses a problem with
regard to reference equality. Although comparing the underlying objects of both
object views would result in an equality, this would not be the case for the
two wrapping Object Views. This inconsistent view can be prevented by only
wrapping an object with an Object View once, and returning that same Object
View every time a new Object View for the underlying object is requested.

Object views offer a basis for fine-grained access control through an aspect
system. Each getter, setter and proxy function on an Object View can be com-
bined with an “around” advice function, allowing the enforcement of an expres-
sive policy.

Because of its size and complexity, manually wrapping the entire DOM with
object views would be a difficult and error-prone process. Instead, the authors
advocate a declarative policy system which is translated into advice for the
Object Views.

The declarative policy is specified by a set of rules consisting of an XPath [95]
selector to specify a set of DOM nodes and an Enabled flag to indicate that
the selected nodes may be accessed. Optionally, each rule can be extended
with default and specific rules for each field of a DOM element. An example
rule, shown in Listing 1.20, specifies that all DOM elements of class example
and its subtree can be accessed (enabled = true) and is by default read-only
(defaultFieldActions). A specific rule for a field called shake allows that field
to be read and invoked as a method.

The authors discuss using Object Views in two scenarios: a scenario where
JavaScript is rewritten1 to make use of Object Views for same-origin usage, and
a scenario where Object Views are used in cross-origin communication between
frames.
1 This work could also be listed under Sect. 3, but since the published paper mostly

focuses on the cross-origin communication which does not require browser modifica-
tions, it is listed in this section instead.
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In the latter scenario, each frame provides an Object View around its
enclosed document to only expose the view required by the other. Communi-
cation between the frames is handled by marshaling requests for the other side
to a string and transmitting it with postMessage(). Because each Object View
has its own built-in policy, the communication channel does not need to enforce
a separate policy.

The performance of Object Views was evaluated on a scenario where several
objects are wrapped in a view, but where the communication between Object
Views is not marshaled and transmitted with postMessage(). For this scenario,
the average overhead is between 15 % and 236 % on micro-benchmarks.

5.4 JSand

Agten et al. propose JSand, a JavaScript sandboxing mechanism based on Secure
ECMAScript (SES).

Secure ECMAScript (SES) is a subset of ECMAScript 5 strict which forms a
true object-capability language, guaranteeing that references to objects can only
be obtained if they were explicitly passed to an object-capability environment.

Without a reference to the DOM, JavaScript code running in a SES environ-
ment cannot affect the outside world. JSand wraps the global object using the
Proxy API [20] and passes a reference to this proxied global object to the SES
environment. Any access to the global object from inside the SES environment,
will traverse the proxy wrapper on which a policy can be enforced.

Without additional care, JavaScript inside the SES environment with access
to this proxied global object, can invoke methods that return unwrapped
JavaScript objects. Such an oversight can cause a reference to the real JavaScript
to leak into the SES environment, making JSand ineffective. To avoid this, JSand
wraps return values recursively, according to the Membrane Pattern [61]. In
addition, JSand preserves pointer equality between wrappers around the same
objects, by storing created wrappers in a cache and returning an existing wrap-
per if one already exists.

Using the Membrane pattern, any access to the outside world from inside
the SES environment, can be intercepted and subjected to a policy enforcement
mechanism. The authors do not specify a specific policy implementation, but
point out that JSand’s architecture allows for expressive fine-grained and stateful
policies.

There are two important incompatibilities between the SES subset and
ECMAScript 5 code, which makes legacy JavaScript incompatible with JSand.

The first is the mirroring of global variables with properties on the global
object and vice versa. When a global variable is created under ECMAScript
5, a property with the same name is created on the global object. Similarly, a
property created on the global object results in the creation of a global variable
of the same name. This ECMAScript 5 behavior is not present in SES and can
cause legacy scripts who depend on that behavior, to break.

Second, because SES is a subset of ECMAScript 5 strict, it does not support
the with construct, does not bind this to the global object in a function call and
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does not create new variables during eval() invocations. Legacy scripts making
use of this behavior will also break in SES.

To be backwards compatible with legacy JavaScript that does not conform to
SES, JSand applies a client-side JavaScript rewriting step where needed before
sandboxing the guest JavaScript code. The UglifyJS [59] JavaScript parser is
used to parse JavaScript into an Abstract Syntax Tree (AST). This tree is then
inspected and modified for legacy ECMAScript 5 constructs that will break in
SES. In particular, JSand rewrites guest code so that the mirroring of global
variables and properties of the global object in ECMAScript 5, is replicated
explicitly. JSand also finds all occurrences to the this keyword and replaces it
with an expression that replaces it with window if its value is undefined, thus
also replicating ECMAScript 5 behavior.

JSand’s performance evaluation indicates an average 9x slowdown for
function-calls than traverse the membrane wrapper, resulting in an average of
31.2 % overhead in user experience when interacting with a realistic web appli-
cation. The load-time of a web application is increased on average by 365 % for
legacy web applications using ECMAScript 5 code which requires the rewriting
step. The authors expect that this rewriting step will not be needed in the future,
so that the average load-time overhead will drop to 203 %.

5.5 TreeHouse

Ingram et al. propose TreeHouse, a JavaScript sandboxing mechanism built
on WebWorkers. As explained previously, WebWorkers are parallel JavaScript
execution environments without a usual DOM, which can only communicate
through postMessage().

An overview of TreeHouse’s architecture is shown in Fig. 13. TreeHouse loads
guest JavaScript code into a WebWorker to isolate it from the rest of a web page.
WebWorkers do not have a regular DOM, so TreeHouse installs a broker with a
virtual DOM inside the WebWorker that emulates the DOM of a real webpage.

Fig. 13. TreeHouse architectural overview. Sandboxes consist of WebWorkers with a
virtual DOM. Access to this virtual DOM is mediated by broker according to a policy.
If access is allowed, the request is forwarded to the real page’s monitor, from [35].
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When this virtual DOM is accessed, the broker first consults the policy to deter-
mine whether access is allowed. If access is allowed, the broker then forwards
the access request to the real page’s “TreeHouse Monitor” using postMessage(),
which handles the access to the real page’s DOM.

TreeHouse offers two deployment options to web developers wishing to use
its sandboxing mechanism. One option is to create a sandbox with a policy and
load JavaScript in it manually using the TreeHouse API. Another option, is more
user-friendly and allows a web developer to specify guest code to be sandboxed,
in actual <script> elements. These <script> elements should have their type
attribute set to "text/x-treehouse-javascript" to prevent them from being
executed by the JavaScript engine in the host page. The special script type is
also automatically detected by the TreeHouse Monitor, which will create sand-
boxes and load the script inside them.

An example use of TreeHouse is shown in Listing 1.21. Here, the first
<script> element shows how a sandbox is created called "worker1", with access
to the DOM element with id "#tetris" and its subtree. The "tetris.js" script
is then loaded inside the sandbox and executed. The second <script> tag ref-
erences the sandbox "worker1" and indicates through the "data-treehouse-
sandbox-policy" attribute that the script "tetris-policy.js" should be
interpreted as a policy instead of guest JavaScript code.

A TreeHouse policy consists of a mapping between DOM elements and rules.
There are three types of rules: a rule can be expressed by a boolean, a function
returning a boolean, or a regular expression. If the rule has a boolean value of
true, access to the associated DOM element is allowed. If the rule is a function,
that function is invoked at policy enforcement time by the broker, and access is
allowed if the return value is true. Finally, if the rule is a regular expression, it
refers to a property. If the regular expression matches a property’s name, then
the guest code is allowed to set a value to that property.

Because WebWorkers are concurrent by design, they present a problem when
multiple TreeHouse sandboxes try to access to same DOM element in a real page.
Such simultaneous access would cause a race condition and result in undefined
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behavior. To prevent such a race condition, TreeHouse allows a DOM element
to only be accessed by one sandbox.

Another concurrency problem arises when the guest code makes use of a
synchronous method such as window.alert(). The guest code will expect the
JavaScript execution to block, waiting for the end-user to click away the pop-up
window. In reality, TreeHouse’s communication channel between the host page
and the WebWorkers is asynchronous because postMessage() is asynchronous.
When calling window.alert() in the guest code, the broker would send an
asynchronous message to the host page, and let code execution in the sandbox
resume immediately. This conflicts with the guest code’s expected behavior. The
authors chose not to handle this case and raise a runtime exception when guest
code calls synchronous methods.

The performance benchmarks for TreeHouse show an average slowdown of
15x to 176x for macro-benchmarks, and an average of 7x to 8000x slowdown on
micro-benchmarks for method invocations on the DOM.

5.6 SafeScript

Ter Louw et al. propose SafeScript, a client-side JavaScript transformation tech-
nique to isolate JavaScript code in namespaces.

SafeScript makes use of Narcissus [67], a JavaScript meta-interpreter, to
rewrite JavaScript code on the client-side and instrument the code so that it can
interpose on the property resolution mechanism. Narcissus is a full JavaScript
interpreter and can correctly handle all of JavaScript’s strange semantics, its
scoping, prototype chains and thus also the property resolution mechanism.

Through this rewriting step, SafeScript can separate JavaScript code in
namespaces by manipulating the property resolution mechanism for each sand-
boxed script so that it ultimately resolves to its own isolated global object.
Because property resolution is under SafeScript’s control, it can effectively medi-
ate access to the real DOM when sandboxed JavaScript guest code requests
access to it.
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Listing 1.22 shows how SafeScript can be used to sandbox a given JavaScript.
In this example, the "rewriter.js" script contains SafeScript’s transformation
code and "interface0.js" contains an API implementation for a “namespace
0.” After creating the namespace with $ sm[0](), the guest code is loaded from
a third-party host, transformed so that the property resolution mechanism is
locked to “namespace 0”, and then executed.

SafeScript ensures that any dynamically generated JavaScript code is also
transformed and isolated in a namespace. In order to do so, SafeScript traps
methods such as eval(), setTimeout(), which can inject JavaScript code into
the execution environment directly. To capture JavaScript code that is indirectly
injected, SafeScript monitors methods such as document.write() and proper-
ties like innerHTML. HTML written through these injection points must first be
parsed and have its JavaScript code extracted before it can be transformed by
SafeScript.

Despite its many optimizations, SafeScript’s performance benchmarks indi-
cate an average slowdown of 6.43x on basic operations such a variable incre-
mentation, because SafeScript rewrites every variable statement. The macro-
benchmark reveals an average slowdown of 64x.

5.7 Discussion

This section discussed six JavaScript sandboxing mechanisms that do not require
any browser modifications: Self-protecting JavaScript, AdJail, Object Views,
JSand, TreeHouse and SafeScript. Some of their features are summarized in
Table 3.

Besides Self-protecting JavaScript, which protects all access-routes to the
DOM API through enumeration, all solutions isolate untrusted JavaScript in an
isolation unit. The isolated JavaScript cannot access the DOM directly, but must
communicate with the real web page and request access, which is then mediated
by a policy enforcement mechanism.

JavaScript sandboxing systems that do not require browser modifications
leverage existing standardized powerful functionality that is available in browsers
today. The advantage of this approach is that standardized functionality is, or
in the near future will be, available in all browsers and thus the sandbox works
out of the box for all Internet users.

Much of the new browser functionality incorporated in the previously dis-
cussed JavaScript sandboxing systems, was not designed for sandboxing and
may not perform well enough for a seamless user experience.

In the future that may change, because browser vendors optimize their code
for speed to compete with other browser vendors. When new browser function-
ality becomes more popular, it will undoubtedly also be optimized for speed,
automatically increasing the performance of the JavaScript sandboxing systems
making use of it.

Web standards keep evolving, so that we can expect more advanced browser
functionality in the future. This new functionality can then be used to design and
implement yet more powerful JavaScript sandboxing systems. Ideally, this new
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functionality will also bring APIs dedicated to JavaScript sandboxing, providing
purpose-built mechanisms to isolate code in a sandbox and communicate with
that sandbox.

When such specialized JavaScript APIs are adopted and implemented, future
JavaScript sandboxing mechanisms will no longer need to rely on repurposed
functionality, making them simpler and faster.

6 In Practice – Application Examples

Previous sections discussed several JavaScript sandboxing mechanisms that work
well in theory. In reality, JavaScript sandboxing solutions have apparently not
seen wide-spread adoption.

The reasons for this low adoption rate are not clear. Perhaps JavaScript
sandboxing has not attained enough critical mass to be “obviously” needed by
web developers. Maybe web developers are waiting for a one-size-fits-all solution,
are not confident enough that the JavaScript sandboxing mechanisms work as
securely as advertised, or are scared away because the sandboxes are too difficult
to deploy.

In this section, we highlight two technologies that have emerged from the
JavaScript sandboxing research and have been used in production systems.

6.1 Facebook JavaScript

Facebook Platform launched in May 2007 [24] as a framework to allow Facebook
application developers to deeply integrate with Facebook and interact with core
Facebook features. Facebook application developers could use Facebook Markup
Language (FBML) to customize the look and feel of their applications as ren-
dered on Facebook. This application frontend written in FBML was hosted by
Facebook itself and consisted of HTML, CSS and Facebook JavaScript (FBJS),
a subset of JavaScript discussed in Sect. 3.

Facebook JavaScript allowed Facebook application developers to include
JavaScript in their application, but in a controlled environment. Because applica-
tions written in FBML are hosted by Facebook, they execute inside Facebook’s
Web origin. If Facebook had allowed the applications to make use of a fully
functional JavaScript environment, they could have easily exfiltrated Facebook
session information and compromise the Facebook accounts and privacy of all
users of that Facebook application. Unlike other platforms who isolate with
iframes, Facebook has opted to sandbox third-party applications by rewriting
HTML, CSS and JavaScript code using a middlebox located on Facebook’s site.

Roughly one year after its introduction, in July 2008, FBML was used by
about 33,000 applications [8] built by about 400,000 developers [22].

According to some developers, FBML was “increasingly less reliable, which
leads to confusion and frustration” and “FBML always seemed like a pretty
buggy and unsustainable approach to Facebook coding.” Because Facebook
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restricted applications to FBML, developers felt they had to stray away from
standard Web coding practices.

In addition to practicality and usability issues, FBML suffered from several
security problems. As discussed in Sect. 3, at least two vulnerabilities [46,47] were
discovered in FBJS, which allowed attackers to break out of FBJS’s JavaScript
sandbox and thus escape isolation into Facebook’s Web origin.

In August 2010, Facebook announced the deprecation of FBML in favor of
iframe isolation for its applications [69], stating that this would eliminate the
technical difference between developing an application on and off Facebook.

In December 2010, Facebook announced that new FBML applications would
still be allowed until Q1 2011 because the implementation of the iframe isolation
was not yet finished [79].

In January 2011, Several old and infrequently used FBML tags and API
methods were eliminated [26].

In March 2011, Facebook stopped accepting new FBML applications but still
allowed existing FBML applications to be updated. Switching to iframes instead
of FBML was recommended [23].

In January 2012, Facebook discontinued support for FBML by no longer fix-
ing bugs for FBML. Security and privacy-related bugs were still being addressed.

In June 2012, an “FBML Removal” migration appeared for all apps, enabled
by default. This migration tool allowed application developers to disable the
migration, extending their usage of FBML for another month.

In July 2012, Facebook also removed the “FBML Removal” migration tool
and the FBML endpoints.

In December 2012, Facebook removed the “Static FBML Page app,” which
could no longer render FBML but still had the ability to display HTML, final-
izing the complete removal of FBML from Facebook.

Facebook now isolates applications in iframes, requiring the webpages to be
hosted outside of Facebook. The applications can make use of Facebook’s Graph
API to interact with the social graph.

6.2 Caja

As discussed in Sect. 3, Google’s Caja rewrites HTML, CSS and JavaScript on
the server-side to secure JavaScript in applications on the client-side. Caja was
developed with ECMAScript 3 as a starting point. ES3 is a “very leaky lan-
guage” [18] with numerous strange scoping rules, making it a nightmare to
secure. The lessons learned from working on Caja were applied to the design
of ECMAScript 5, making it a version of JavaScript which, as opposed to ES3,
is fairly easy to secure through its “strict mode”. Contained in ECMAScript 5
is a subset called Secure ECMAScript (SES), which is object-capability safe.

Caja is used, or has been used in several Google products [18,81,82] to allow
embedding of third-party JavaScript: Google Labs (retired in 2011), iGoogle
(retired in 2012), Orkut (retired in 2014), Google Sites, Google Apps Script,
Blogspot, . . .
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Yahoo used Caja in its Yahoo! Application Platform [78], MySpace for its
MySpace Developer Platform [44] and PayPal for PayPal Apps [43]. All three
stopped using Caja (although PayPal’s case is unconfirmed), but it is unclear
why. A popular opinion seems to be that Caja is too restrictive for developers,
who expect to be able to use full JavaScript.

Because Caja is an open-source project, it can be freely used and modified by
others. Besides the very visible use-cases, Caja can also be used by less prominent
websites. Apache Shindig is a container for the OpenSocial specification, which
defines a component hosting environment and a set of common APIs for web-
based applications. Shindig uses Caja for JavaScript rewriting, which means that
less prominent web applications which make use of Shindig may also be using
Caja in the background.

To this day, Caja is still actively developed. Used by Google itself and with
its developers involved in workgroups on Web standards and the ECMAScript
committee, the work on Caja has contributed to the development of the Web
and will probably not go away anytime soon.

7 Conclusion

This work gave an overview of the JavaScript sandboxing research field and the
different approaches taken to isolate and restrict JavaScript to a chosen set of
resources and functionality.

The JavaScript sandboxing research can be divided into three categories:
JavaScript subsets and rewriting systems, JavaScript sandboxing through
browser modifications and JavaScript sandboxing without browser modifications.

JavaScript subsets and rewriting systems can restrict untrusted JavaScript
if it adheres to a JavaScript subset, but a middlebox needs to verify that this is
the case, possibly rewriting the code. These middleboxes break the architecture
of the Web when implemented on the server-side, and put an extra burden on
the user if implemented on the client-side.

Browser modifications are powerful and can sandbox JavaScript efficiently,
because of their prime access to the JavaScript execution environment. Unfortu-
nately, the software modifications are difficult to distribute and maintain in the
long run unless they are adopted by mainstream browser vendors.

JavaScript sandboxing mechanisms without browser modifications leverage
existing browser functionality to isolate and restrict JavaScript. This approach
can be slower but requires no redistribution and maintenance of browser code.
When implemented correctly, it automatically works on all modern browsers.
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