
FlashOver: Automated Discovery of Cross-site Scripting
Vulnerabilities in Rich Internet Applications

Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Wouter Joosen, Frank Piessens
IBBT-Distrinet, Katholieke Universiteit Leuven, 3001 Leuven, Belgium

Steven.VanAcker@cs.kuleuven.be

ABSTRACT
Today’s Internet is teeming with dynamic web applications
visited by numerous Internet users. During their visits,
typical Web users will unknowingly use tens of Rich Inter-
net Applications like Flash banners or media players. For
HTML-based web applications, it is well-known that Cross-
site Scripting (XSS) vulnerabilities can be exploited to steal
credentials or otherwise wreak havoc, and there is a lot of re-
search into solving this problem. An aspect of this problem
that seems to have been mostly overlooked by the academic
community, is that XSS vulnerabilities also exist in Adobe
Flash applications, and are actually easier to exploit because
they do not require an enclosing HTML ecosystem.

In this paper we present FlashOver, a system to automati-
cally scan Rich Internet Applications for XSS vulnerabilities
by using a combination of static and dynamic code analy-
sis that reports no false positives. FlashOver was used in a
large-scale experiment to analyze Flash applications found
on the top 1,000 Internet sites, exposing XSS vulnerabilities
that could compromise 64 of those sites, of which six are in
the top 50.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; H.3.5 [Information
Storage and Retrieval]: Web-based services

Keywords
Flash, Rich Internet Applications, XSS, Cross-site Scripting
Vulnerabilities, Automated Interaction, Large-scale Experi-
ment

1. INTRODUCTION
The last fifteen years have transformed the Web in ways

that would seem unimaginable to anyone of the “few” In-
ternet users of the year 1995 [37]. What began as a simple
set of protocols and mechanisms facilitating the exchange

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’12, May 2–4, 2012, Seoul, Korea.
Copyright 2012 ACM 978-1-4503-0564-8/11/03 ...$10.00.

of static documents between remote computers is now an
everyday part of billions’ of users life, technical and non-
technical alike. The sum of a user’s daily experience is com-
posed of open standards, such as HTML, JavaScript and
Cascading Style Sheets as well as proprietary plugins, such
as Adobe’s Flash [4] and Microsoft’s Silverlight [27].

Adobe’s Flash is the most common way of delivering Rich
Internet Applications to desktop users, with the latest statis-
tics revealing an almost complete market penetration of Flash
on desktop computers [13, 32]. While some have claimed
that the new version of HTML, HTML5 [16], contains enough
functionality to render the use of Flash obsolete, the real-
ity is that today most Rich Internet Content, ranging from
advertising banners and video players to interactive photo
galleries and online games, is served and consumed by the
Flash platform.

This rapid evolution of the Web was not left unnoticed
by attackers. Traditionally, attackers preferred attacking
the server-side of the Internet infrastructure, such as Web
servers [21] and mail servers, since that gave them access to
powerful hosts with plenty of bandwidth and disk space as
well as a foothold in a company’s internal network. Nowa-
days however, the attacks are targeting the client-side of
the Internet infrastructure. This can be the Web applica-
tion, as rendered in a browser, the software of the browser
itself or even the user sitting behind the browser. The result
of client-side attacks is usually the theft of user credentials
or the download of malware that makes the user’s computer
an unwilling part of a botnet [12].

Since Flash is part of all the technologies that shape the
every day experience of Web users, it is also part of this
new attack surface. Attacks against Flash target either vul-
nerabilities in the code of the Flash platform itself, or the
insecure practices of developers of Flash applications. In
this second category falls the problem of Cross-site Script-
ing (XSS) [43]. While XSS in Web applications is a well-
known and extensively researched problem, the problem of
performing Cross-site Scripting attacks through vulnerable
Flash applications has received much less attention. A Flash
application can interact with the DOM (Document Object
Model) of the page that embeds it or even with the browser
itself. This allows Flash developers to read information from
the page that embeds them, write information to the DOM
or redirect the user to a desired page, such as the redirection
that happens when a user clicks on a Flash advertisement
banner. If these interactions are not protected adequately,
an attacker can inject arbitrary JavaScript code that will be
executed by a victim’s browser in the context of the web-

site hosting the vulnerable Flash application. Such code
can, among others, steal a user’s session identifier, access
the website’s local storage on a victim’s browser or, in some
cases, read the victim’s geolocation information.

In this paper we present FlashOver1, a system capable of
automated detection of Cross-site Scripting vulnerabilities
in Flash applications. As the name of our system implies,
its goal is to discover ways to perform malicious interac-
tions between a Flash application and the rendering browser,
that were never intended by the programmer of the vulner-
able application. Given a Flash application, FlashOver per-
forms static analysis in order to automatically identify Ac-
tionScript variables that can be initialized with user-input
and are also used in operations that are commonly prone
to code injection attacks. The identified variables are then
tested dynamically in order to discover actual vulnerabilities
present in the audited Flash application.

More specifically, our FlashOver prototype first decom-
piles the byte-code representation of ActionScript (the script-
ing language of the Flash platform) and then performs static
analysis on the source code of the application, in search for
commonly misused function calls that are responsible for
Flash-to-DOM and Flash-to-Browser communication. Once
these functions are located, our system then tracks the ar-
guments of these function calls back to their initialization.
When this process is complete, the static-analysis compo-
nent FlashOver produces a list of variables which are utilized
in commonly misused ActionScript API calls and are ini-
tialized using user-input. This list of potentially exploitable
variables is then used by the dynamic-analysis component
of our system, which renders the Flash application in the
Firefox browser and initializes the variables in many pos-
sible ways, always mimicking the methodology of attackers
who would lure victims in a page under their control. In
the last phase, the automatic clicking module of FlashOver

clicks thousands of times on the rendered application, with
the intent of triggering the vulnerable API call. If our sys-
tem detects the execution of the injected JavaScript, then
the Flash application is flagged as vulnerable.

To evaluate FlashOver, we obtained a partial list of Flash
applications hosted on the top 1,000 sites of the Internet,
which we downloaded and provided as input to our sys-
tem. At the end of the experiment, FlashOver success-
fully detected exploitable XSS vulnerabilities in Flash ap-
plications of many well-known websites, including ebay.com,
skype.com, mozilla.org and apple.com. These results are
evidence both of the problem of XSS attacks through Flash
applications as well as our system’s ability of automatically
detecting them. The main contributions of this paper are
the following:

• Detailed analysis of an XSS attack vector that is com-
monly overlooked in Web application development

• Design and implementation of FlashOver, a fully auto-
mated system which uses a combination of static and
dynamic analysis in order to identify Flash applica-
tions vulnerable to code injection attacks

• Evaluation of our system using Flash applications of
the top Internet websites, showing the prevalence of

1flashover : An unintended electric arc, as between two
pieces of apparatus

the aforementioned vulnerability as well as our sys-
tem’s ability of detecting it

The rest of this paper is structured as follows: In Section 2
we give a brief overview of Cross-site Scripting attacks, Flash
technology and how the one affects the other. We describe
the general architecture of FlashOver in Section 3 followed
by our implementation choices and their rationale in Sec-
tion 4. In Section 5 we evaluate our prototype by using
it to discover previously unreported vulnerabilities in Flash
applications of the top 1,000 Alexa sites. We present our
ethical considerations in Section 6, we discuss related work
in Section 7 and we conclude in Section 8.

2. BACKGROUND
In this section we give a brief overview of Cross-site Script-

ing attacks and of the Adobe Flash platform. We also
present a motivating example showing how a vulnerable
Flash application can be used to inject malicious JavaScript
that will be executed by user’s browser in the context of the
domain hosting the vulnerable Flash application. While the
techniques presented in the rest of this paper are specific
to the Flash platform, they are, in principle, applicable to
other similar content-delivering platforms, such as Microsoft
Silverlight [28].

2.1 Cross-site Scripting
Cross-site Scripting (XSS) attacks belong to a broader

range of attacks, collectively known as code injection at-
tacks. In code injection attacks, the attacker inputs data
that is later on perceived as code and executed by the run-
ning application.

In XSS attacks, an attacker adds malicious JavaScript
code on a page of a vulnerable website that will be executed
by a victim’s browser when that vulnerable page is visited.
Malicious JavaScript running in the victim’s browser and in
the context of the vulnerable website can access, among oth-
ers, the session cookies of that website and transfer them to
an attacker-controlled server. The attacker can then replay
these sessions to the vulnerable website effectively authen-
ticating himself as the victim. The injected JavaScript can
also be used to alter the page’s appearance to perform phish-
ing or steal sensitive input as it is typed-in by the user.

2.2 Adobe Flash
Adobe Flash is a proprietary multimedia platform which

is used to create Rich Internet Applications. To be able to
run Flash applications on a desktop, a Flash player must be
installed which takes the form of a browser plugin. Accord-
ing to the latest statistics, Adobe’s Flash player is installed
on more than 99% of desktops connected to the Internet [13,
32]. Over the years, the amount of functionality available
to Flash applications has increased with each new version of
the Flash player. Today, a Flash application can combine
audio, video, images and other multimedia elements.

Flash applications are contained in SWF files (i.e. files
with the .swf extension) which bundle multimedia elements
together with byte-code-compiled ActionScript (AS) code.
When loaded into the Flash player, the Flash application is
rendered and, if present, the AS byte-code is interpreted and
executed. ActionScript is a scripting language developed by
Adobe which allows the programmer to handle events, de-
sign the interaction between multimedia elements and com-

municate with both the embedding browser and remote Web
servers. The current version of ActionScript is ActionScript
3.0 with legacy support for prior versions.� �
<object type=" application/x-shockwave -flash"

data=" myFlashMovie.swf" width ="550"
height ="400" >

<param name="movie" value=" myFlashMovie.swf" />
<param name=FlashVars

value="var1=Hello&var2=World" />
</object >� �

Figure 1: Embedding a SWF file using the object
tag

2.3 Using SWF files
SWF files are typically embedded in HTML using the <ob-

ject> or <embed> tags, but it is also possible to load an
SWF file into the browser directly, without embedding it into
HTML, either by requesting it as is from a browser’s URL
bar or providing it as the source argument to an <iframe>

tag in an existing HTML page.
Flash, like many other technologies, allows for the provi-

sion of load-time input next to hard-coded values specified at
compile-time and present in the resulting SWF file. For in-
stance, YouTube videos are displayed on webpages that each
embed the same Flash video player. Data specific to the dis-
played video-file is passed to the Flash player at load-time
through variables embedded in the enclosing HTML page.
Flash supports two methods of passing values to Flash ob-
jects:

• FlashVars directive: When embedding a SWF file
using the <object> or <embed> tags, the FlashVars pa-
rameter can be used to pass values to specific variables.
In Figure 1, FlashVars are utilized to initialize Flash’s
variables var1 and var2 to“Hello”and“World” respec-
tively.

• GET parameters: A web developer can also utilize
GET-parameters to pass arguments to a Flash appli-
cation. For instance, when the URI: http://example.
com/myFlashMovie.swf?var1=Hello&var2=World is in-
voked, the Flash application will initialize its internal
variables var1 and var2 with their respective values.
This method is usually overlooked by web developers
who believe that the Flash application hosted on their
page can only receive the parameters that they have
hard-coded in the embedding HTML page and thus in
many cases do not perform input validation within the
Flash application itself.

2.4 Execution context of SWF files
In the previous section, we briefly examined the two ways

that a SWF file can be loaded by a browser (using special
HTML tags or a direct reference). While in both cases,
the Flash Player loads the SWF file and starts executing it,
there is a very important difference in the way that the two
Flash applications interact with the surrounding page when
the Flash applications requests the execution of JavaScript
code from the browser.

The allowScriptAccess [2] runtime parameter arbitrates
the access a Flash application has to the embedding page.
There are three possible values: ‘always’, ‘sameDomain’ and
‘never’, with ‘sameDomain’ being the default. This value
has the effect that access is only allowed when both the
SWF application and the embedding page are from the same
domain.

When an SWF file is embedded using the embed tag, and
Flash requests the execution of JavaScript code from the
browser, the code will execute within the origin of the em-
bedding site, assuming a suitable value for the allowScript-
Access parameter. That is, if a SWF file hosted on the
web server of foo.com is embedded in an HTML page on
bar.com, the origin of the Flash-originating JavaScript is
now bar.com. The origin is defined using the domain name,
application layer protocol, and port number of the HTML
document embedding the SWF.

If however, bar.com loads the SWF file of foo.com us-
ing an <iframe>, the browser creates an empty HTML page
around the Flash application and any JavaScript initiated
from the application will retain the origin of foo.com. Ad-
ditionally, since the default value for allowScriptAccess is
‘sameDomain’, this means that the Flash application will
be able to access data in the same origin as foo.com.

2.5 XSS in Flash� �
movie ‘ad.swf ’ {

button 42 {
on (release) {

getURL(_root.clickTag , ‘_blank ’);
}

}
}� �
Figure 2: ActionScript 2.0 source code of an exam-
ple vulnerable Flash application

Consider a Flash advertising banner of which the Action-
Script 2.0 source code is listed in Figure 2. The banner
includes a button which, when clicked and released, triggers
the execution of the getURL() function. The getURL(url,

target) directs the browser to load a URL in the given tar-
get window. In this example, the URL is obtained from
the variable clickTag in the global scope, and loaded into
a new window (_blank). When used legitimately, the ban-
ner is located on http://company.com/ad.swf and is em-
bedded on one of company.com’s web pages. The value of
the clickTag variable is provided by the embedding page
using the FlashVars directive and, in our example, sup-
pose that it would redirect the clicking user to e.g. http:

//company.com/new_product.html.
As described in earlier sections, a SWF file can be directly

referenced and any GET parameters will be provided to the
Flash application itself, exactly as in the FlashVars case.
Thus, if the banner was directly requested through http://

company.com/ad.swf?clickTag=http://www.evil.com, the
clickTag variable would now hold the value http://www.

evil.com instead of the value intended by company.com.
This behavior could be abused by attackers in order to send
malicious requests with the correct Referrer header towards
Web applications that use Referrer checking as a means of
protection against CSRF attacks [34]. While this is defi-

Figure 3: Advertising Banner on apple.com vulner-
able to Cross-site Scripting through Flash

nitely a misuse scenario, the vulnerable code unfortunately
allows for a much greater abuse. Instead of providing a web-
site URL as the value for clickTag, an attacker could pro-
vide a JavaScript URL, such as javascript:alert(‘XSS’).
A JavaScript URL is a URL that causes the browser to ex-
ecute the specified JavaScript code in the context of the
current-page (alert(‘XSS’) in our aforementioned exam-
ple) instead of making a remote request, as is the case in
HTTP(S) URLs. In this scenario, when that banner is
clicked, the user’s browser will execute attacker-supplied
JavaScript code instead of redirecting the user.

All an attacker needs to do in order to exploit this vul-
nerability, is to lure a victim into visiting a website which
loads the vulnerable SWF file in an iframe and insert a
javascript: URL containing malicious JavaScript code into
the query string of the SWF file URL. Since the SWF file is
loaded in an iframe, it will retain the origin of company.com
and thus when the user clicks on the banner, the JavaScript
code will execute in the context of company.com instead of
the attacker’s site. This will allow the malicious JavaScript
code to access, among other things, the user’s cookies for
company.com and steal his session identifiers. If a click on
the vulnerable Flash banner is required to trigger the execu-
tion of the injected JavaScript, the user can be tricked into
clicking the banner, either using social engineering or click-
jacking techniques [7]. In cases where the vulnerable code is
triggered after a predetermined amount of time, all that the
attacker needs to do is to make sure to keep the user on his
malicious site for the appropriate amount of time.

While the example ActionScript in Figure 2 appears to
be a contrived one, many websites unfortunately have simi-
larly vulnerable banners. Figure 3 shows a banner hosted on
apple.com2 which does not perform input validation within
its ActionScript code and is thus vulnerable to XSS.

3. FLASHOVER APPROACH
The goal of FlashOver is to automatically discover XSS

vulnerabilities in Flash applications, as opposed to the man-
ual code review illustrated in Section 2.5. Logically, FlashOver

2We discovered this vulnerable SWF file through our ex-
periment described in Section 5, and we also responsibly
informed Apple about this vulnerability, see Section 5.3

can be separated in three sequential steps: static analysis,
attack URL construction and automated interaction. The
high-level idea behind each of these steps of this approach
is explained in more detail in the following subsections.

3.1 Static analysis
In this first step, potentially exploitable variables (PEVs)

are automatically discovered in a given SWF file. PEVs are
variables which are utilized in commonly misused Action-
Script API calls and are initialized using user-input. This
step requires a static analysis of the ActionScript byte-code
embedded in the given SWF file.

Embedded ActionScript byte-code in an SWF file can not
easily be read and understood by a human, giving a false
sense of security to Flash developers who think their code
can not be recovered. In reality, several free and commer-
cial SWF decompilers exist that can reconstruct the Action-
Script source code with very high accuracy.

Be it either through decompilation and source code analy-
sis, or static analysis of the ActionScript byte-code, a list of
potentially exploitable variables is extracted from the SWF
file. The variables in this list will be used as attack vectors
in later steps of FlashOver.

3.2 Attack URL construction
In this second step, an actual attack on the Flash applica-

tion is prepared by crafting the attack URL that an attacker
would give to a victim and trick him into navigating to it.
In an actual XSS attack the attacker would try to execute
JavaScript in the security context of a target domain us-
ing the victim’s credentials for that domain. While the at-
tacker’s injected JavaScript would perform something unde-
sirable for the victim, FlashOver uses the injected JavaScript
code to log that the attack was successful.

The results of FlashOver will ultimately be used by Flash
application developers to track down vulnerabilities in their
code and fix them. Therefore it is essential that the results
provide as much useful data as possible. There are three
essential pieces of information that must be recorded to be
able to reconstruct a successful attack: the entry point (i.e.
Flash application that was exploited), the attack vector (i.e.
the exploitable variable used to inject code) and the payload
(i.e. the injected JavaScript code).

These three pieces of information are encoded in the at-
tack URL. The SWF file being attacked can be identified
by a unique identifier swfid. For each variable var of the
potentially exploitable variables, as identified in the static
analysis step, a payload value of payload-type type is gen-
erated. This payload contains JavaScript code that, when
executed by the targeted Flash application, will log the tuple
(swfid, var, type). From any tuple (swfid, var, type)

that shows up in the logs, the entry point, attack vector and
payload can be reconstructed and can be used to identify
the exact vulnerability of the Flash application.

3.3 Automated interaction
In the third step of the FlashOver process, the previously

crafted attack URLs are used to truly attack the Flash appli-
cation being examined. In a real-world scenario, the attacker
would give the attack URL to a victim and trick the vic-
tim into interacting with the given Flash application. Since
FlashOver tries to match the scenario as close to reality
as possible, an automated process must interact with the

Flash application and by doing so, trigger the execution of
the JavaScript payload encoded in the attack URL.

Interaction can mean a lot of things. Flash applications
can respond to keyboard events, mouse events and even more
esoteric events from e.g. a built-in tilt sensor. The set of
input events that trigger actions in a Flash application de-
pends on the Flash application itself. For good results, the
automated interaction process should try to cover as much
as possible in an intelligent way.

4. FLASHOVER PROTOTYPE
The description of the general FlashOver approach in Sec-

tion 3 omits implementation details, because each of the
steps in FlashOver can be implemented in a number of ways
with varying degrees of thoroughness. We purposefully chose
to implement a minimalistic version of FlashOver to inves-
tigate the level of effort and skill required by an attacker to
automatically detect XSS vulnerabilities in SWF files.

Our FlashOver prototype is schematically illustrated in
Figure 4. The following subsections discuss the implemen-
tation details of each step in our FlashOver prototype.

Figure 4: Schematic overview of our FlashOver pro-
totype: During static analysis, the SWF file is de-
compiled and regular expressions uncover potentially
exploitable variables (PEVs) from the ActionScript
source-code. These PEVs are inserted into injec-
tion templates in the attack URL construction step.
The attack URLs are loaded in a real browser in
the automated interaction step, resulting in a list of
discovered XSS vulnerabilities.

4.1 Static analysis
This first step in the FlashOver process requires static

analysis of the SWF file. We chose to decompile the SWF
file and then perform a simple static analysis on the resulting
ActionScript source code.

There are many SWF decompilers, but not all of them
support ActionScript 3.0. Choosing a decompiler, such as
the freely available flare [24], that does not support the lat-
est version of ActionScript, would mean that there would be
a blind-spot in our analysis. For that reason, we chose a com-
mercial decompiler with support for ActionScript 3.0 [35].

To reduce the complexity of our prototype, we opted for
a simple regular-expression extraction of the PEVs instead
of using more complicated analysis methods. Using this
method, the resulting ActionScript source code is searched
for patterns indicating potentially exploitable variables.

• _root.re

• getRemote(#,re,...)

• .addCallback(#,#,re)

• .sendAndload(re,...)

• loadvariables(re,...)

• URLRequest(re,...)

• getURL(re,...)

• loadMovie(re,...)

• .load(re,...)

• .call(re,...)

• loadClip(re,...)

where the regular expression to match a variable name re
= ‘[a-zA-Z$_][a-zA-Z0-9$_]*’ and ‘#’ denotes a “don’t

care” parameter.

Figure 5: The regular expressions, in pseudo-form,
used in our FlashOver prototype to match the names
of potentially exploitable variables

The regular expressions used in our prototype are listed
in pseudo-form in Figure 5. For each of these regular ex-
pressions, re indicates where the name of a potentially ex-
ploitable variable could appear in a function call in the
ActionScript source code. The regular expression used to
match variable names is synthesized from the variable nam-
ing rules defined by Adobe: “The first character of an identi-
fier must be a letter, underscore (), or dollar sign ($). Each
subsequent character can be a number, letter, underscore, or
dollar sign” [1]. The first regular expression (_root.re) in-
dicates that a variable in the global address space is used,
while the other regular expressions match function calls for
sensitive functions that could lead to XSS.

4.2 Attack URL construction

Figure 6: Construction process of an attack URL for
http://target.tld/ad.swf with swfid ABCDEF, injection
template id 1 and variable abc with id 2

Based on the variable names identified in the previous
step, attack URLs are constructed that, when the attack
payload is triggered, will report in what way the given SWF
file is vulnerable to XSS.

Exploitable variables can be used in ActionScript in a
number of different ways. Through our review of JavaScript
injection techniques, we identified a non-exhaustive list of

id Example occurrence of var Contents of var
0

getURL(var)
target URL control - plain target URL

1 javascript:code JavaScript URL
2 getURL("javascript:"+var) code JavaScript code by itself
3 writeHTML(var) <script>code</script> HTML <script> tag injection
4 eval("x = "+var+";") 0; code//

introducing closing quotes and
semicolons

5 eval("x = ’"+var+"’;") ’; code//
6 eval("x = \""+var+"\";") "; code//
7 eval("alert("+var+")") 0); code//

introducing closing quotes,
brackets and semicolons

8 eval("alert(’abc = ’"+var+"’)") ’); code//
9 eval("alert(\"abc = \""+var+"\")") "); code//

Figure 7: The 10 injection templates used in our implementation. Each injection template matches a certain
example occurrence of a exploitable variable in ActionScript. The injection template indicates what data
should be injected for a successful attack. The first template is a control, where the logging URL is injected
instead of any code. The other nine inject actual JavaScript code.

nine ways in which an attacker-specified payload can ulti-
mately be injected into a JavaScript context, through ex-
ploitable variables in an SWF file. As a control, we also
use an injection template that injects no JavaScript code.
The injection templates are summarized in Figure 7. For
each of these injection templates, a separate attack URL is
constructed.

As discussed in Section 3.2, the attack URL should encode
information about entry point, attack vector and payload
type into a unique identifier. The entry point is encoded by a
unique hex-encoded 256-bit number that identifies the SWF
file being analyzed. The attack vector, or the exploitable
variable used to inject the payload, is encoded as an index
into the list of identified potentially exploitable variables.
Finally, the payload type is encoded as an index into the list
of nine injection templates specified earlier.

The process for building an attack URL for an example
SWF file with swfid equal to ABCDEF, an exploitable variable
abc and injection template 1 is shown in Figure 6. From the
given SWF file identifier (swfid), injection template index
(type id) and exploitable variable index (var id), a unique
identifier is constructed for this specific attack URL, by con-
catenating these three values, separated by a ’x’ character.
This unique identifier is appended to the URL for the log-
server, forming the logging URL. The logging URL is then
used in a JavaScript code fragment that, when executed, will
trigger a request to the log-server, logging the unique iden-
tifier. This piece of JavaScript code is then inserted into the
selected injection template, forming the payload of the at-
tack URL, in this case a simple javascript: URL. Finally,
the payload is assigned to the exploitable variable (abc in
Figure 6) in a query string of the attack URL.

4.3 Automated interaction
The final step of FlashOver, involves passing the crafted

attack URL to a simulated victim and let that victim in-
teract with it, potentially triggering the execution of the
injected JavaScript. Based on our personal experience and
the analysis of many Flash applications, we make the as-
sumption that most interactions with Flash applications are
achieved through mouse clicks. For that reason, we only
consider this type of interaction in our prototype implemen-
tation.

The Flash application is loaded into a real Firefox browser.
The browser itself is started in Xvfb, a virtual frame-buffer X

server 3 and the virtual mouse attached to this Xvfb session
is controlled through the xte program 4. The Xvfb server is
set up to offer a virtual frame-buffer of 640x480 pixels with
24-bit color to any program running inside. Firefox, running
inside Xvfb is started full-screen (so 640x480) in kiosk mode.
This means that all toolbars and menus are removed, and
undesirable functionality, like printing, is disabled.

Once Firefox has started and loaded the Flash applica-
tion, a list with 10,000 random (x,y) locations is generated
and passed to xte, which moves the mouse to those loca-
tions and issues a click. After these 10,000 clicks, the auto-
mated clicker pauses to give the Flash application time to
process the input, which could involve executing the injected
JavaScript payload.

If the execution of the injected JavaScript is triggered as
a result of one or more mouse-clicks, this will be recorded
in our logging server. The detection of the injected codes’
execution effectively creates a new set of actually exploitable
variables which is a subset of the original potentially ex-
ploitable variables set, as that was generated in the first
stage of FlashOver. The entries of the logging server can
then be used, as previously explained, to pinpoint the exact
place in the Flash application and the specific attack vector
that can be used for a XSS attack.

5. EVALUATION
We evaluated our FlashOver prototype with a large-scale

experiment to determine how many SWF files vulnerable to
XSS are hosted on the Alexa top 1,000 Internet sites [5].

5.1 Experimental setup
For each of the domains in the Alexa top 1k, a list of pub-

licly exposed SWF files was retrieved from Altavista using
the query “site:domain.com filetype:swf ” where domain.com
would be a domain in our experiment.

The SWF files discovered through these queries were down-
loaded onto a local web server. Although the experiment
could have been conducted using the SWF hosted on their
original locations, we feared that it might potentially harm
the targeted site. In addition, storing the SWF locally im-
proved performance by reducing the time it took to load the
SWF file into the browser.

3http://www.xfree86.org/4.0.1/Xvfb.1.html
4http://linux.die.net/man/1/xte

After the non-SWF or otherwise invalid SWF files were
removed from the set of downloaded files, they were pro-
cessed by FlashOver. The static analysis and attack URL
construction steps of FlashOver were performed on all SWF
files in advance to reduce overhead for the entire experiment.
The final step, using an automated clicker, was performed
in parallel on 70 dual-core computers.

Because the automated clicker clicks on random positions
on the Flash application, each run of the automated clicker
can yield different results. To increase the odds that the
payload in the attack URLs was triggered, the entire dataset
was processed by the automated clickers 20 times. The total
experiment ran for approximately five days, approximately
six hours per run.

5.2 Results
From Altavista, 18,732 URLs were retrieved. After down-

loading, 3,800 SWF files did not contain a valid Flash ap-
plication. Of the remaining 14,932 SWF files, 35 caused
our decompiler to destabilize and crash. From the 14,897
SWF files that were decompiled successfully, 8,441 were de-
termined to have exploitable variables. For each of these
8,441 SWF files, 10 attack URLs were generated: one for
each injection template listed in Figure 7. The final gener-
ated dataset contained a list of 84,410 attack URLs. All of
these were processed in parallel by the automated clickers.

After analysis of the log files, 523 SWF files were found to
load content from an attacker-supplied URL (i.e. URL in-
jection) and 286 SWF files allowed the execution of attacker-
supplied JavaScript code. These 286 vulnerable SWF files
can be traced back to 64 Alexa domains, of which six are in
the top 50.

Figure 8: Results from our FlashOver experiment,
shown as a cumulative plot. The amount of SWF
files per site found is divided by 10 to match the
scale of the other results.

The results of our large-scale experiment are summarized
in the cumulative plot in Figure 8. The data-points are
sorted on the x -axis, lower values indicating higher Alexa
ranking, and vice versa. Three data-points per Alexa do-
main are shown: the amount of SWF files found per domain,
divided by 10 to match scale, the amount of SWF files in
that domain vulnerable to URL injection and the amount

Variable Name Instances found Percentage
clicktag 101 35.31%
pageurl 97 33.92%
click 26 9.10%
counturl 10 3.50%
gameinfo 8 2.80%
link1 7 2.44%
url 3 1.05%
link04 2 0.70%
downloadaddress 2 0.70%

Figure 9: Top ten most commonly-named vulnera-
ble variables found in our experiment

of SWF files vulnerable to XSS. The three distinguishable
jumps, at indices 193, 293 and 806, indicate a large amount
of vulnerable SWF files located at the Alexa domains of the
corresponding ranking.

Figure 9 shows the ten most commonly named vulnerable
variables that we discovered in our analysis. Interestingly,
the two most commonly vulnerable variables are responsi-
ble for more than 69% of all vulnerabilities found. The fact
that many different Flash applications are vulnerable to the
same attack and through the same variables, suggests the
use of automated tools for the creation of Flash applications
that generate code in a vulnerable way. At the same time,
our results highlight the need for scanning of variables and
code-paths beyond the ones commonly associated with vul-
nerabilities.

5.3 Discussion
When one considers the number of vulnerable Flash ap-

plications found on the Internet’s top websites, it becomes
clear that XSS attacks through Flash applications are indeed
a problem. Although Adobe advocates security best prac-
tices [3], stating that user-input should be sanitized where
needed, this advice seems to be overlooked by Flash appli-
cation developers.

The required effort and skill to automatically discover
these XSS vulnerabilities is limited. As discussed in Sec-
tion 4, our FlashOver prototype uses suboptimal static anal-
ysis and randomized clicking to simulate a user. For the
static analysis part, a more precise taint-analysis system
would produce better results since it could identify more
variables influenced by user-input and thus produce a longer
list of potentially exploitable variables. Moreover, a deter-
mined attacker can easily uncover additional vulnerabilities
using a manual static analysis. Likewise, the randomized
clicker is lacking the cognitive ability of an actual human
user: it does not understand typical GUI widgets that a hu-
man would click and it can not interact with e.g. a game
like a human would. This means that there may be vulner-
abilities that our clickers couldn’t trigger but that a human
victim would. Therefore, the amount of vulnerable Flash
applications detected in this experiment is a lower bound:
the actual amount of vulnerable applications is most likely
higher, making the security threat an even bigger issue.

An interesting property of FlashOver is that it detects
successful JavaScript injection by actually simulating a vic-
tim who triggers the use of the injected JavaScript code in
one or more potentially exploitable variables. Thus, while
FlashOver may miss some vulnerabilities (false negatives), it

has practically zero false positives. While one can construct
examples where FlashOver would report a false positive, e.g.
an application that is vulnerable to XSS but inspects the in-
jected payload and only allows it if it is “not dangerous”, we
believe that these are unrealistic examples and thus would
not be encountered in the analysis of real-life Flash applica-
tions.

6. ETHICAL CONSIDERATIONS
Testing the security of real websites against Cross-site

Scripting attacks may raise some ethical concerns. How-
ever, analogous to the real-world experiments conducted by
Jakobsson et al. [18, 19] and Nikiforakis et al. [29], we believe
that realistic experiments are the only way to reliably esti-
mate success rates of attacks in the real world. Moreover,
we believe that our experiments will help raise awareness
against this, usually overlooked, issue. In particular, note
that:

• All Flash applications were downloaded and exploited
locally thus no malicious traffic was sent towards the
live Web servers of each website

• All attacks were targeting our own simulated victim
and no real users

• We are in the process of disclosing these vulnerabilities
to all the affected websites so that they may repair
them

7. RELATED WORK
Due to the large installation percentage of Adobe’s Flash

in desktop and laptop computers, Flash has been the target
of many attacks over the years. These attacks have been
targeting either implementation bugs in the Flash plugin
itself [10] or the insecure use of Flash functionality from
Rich-Internet Application developers.

Cross-site Scripting attacks in Web applications [43] have
received a lot of attention over the last years and there exists
a wide range of research on detecting injected JavaScript and
protecting the user from it [23, 40, 30, 39] as well as many
initiatives that try to educate developers about this issue [31,
11]. The sheer volume of XSS attacks has even caused
mainstream browsers like Microsoft Internet Explorer 8 and
Google Chrome to add XSS-detection mechanisms in an at-
tempt to stop attacks against the browsing user, even if the
visited Web application isn’t actively protecting itself [8, 33].

The problem of performing Cross-site Scripting attacks
through insecure Flash API methods was first highlighted by
Jagdale [17] who provided examples of insecure ActionScript
code and reported that out of the first 200 SWF files that
Google gave as a result to the search query “filetype:
swf inurl:clickTag”, 120 were vulnerable. Jagdale also
showed that many tools that automatically generated SWFs
were, at the time, generating applications vulnerable to XSS
attacks, including tools by Adobe itself. Bailey [6] verified
the earlier findings of Jagdale and gave examples of high-
profile websites hosting SWFs vulnerable to Remote File
Inclusion attacks (RFI) that could be leveraged to perform,
among others, XSS attacks.

SWFScan [15] is a tool that decompiles a Flash application
and performs static analysis to detect possible vulnerabili-
ties. SWFScan searches a decompiled Flash application for

hardcoded URLs, passwords, insecure cross-domain permis-
sions and coding practices that may lead to XSS. SWFIn-
truder [36] is a user-guided semi-automatic tool which tests
for XSS vulnerabilities in Flash applications.

The important difference that separates FlashOver from
earlier work is that earlier work depended either on the man-
ual or semi-automatic analysis of SWF files. Contrastingly,
FlashOver is the first system that is able to discover “zero-
day” vulnerabilities in a completely automatic fashion with-
out relying on naming conventions of commonly vulnera-
ble variables or user guidance. While FlashOver, due to
its incomplete static analysis, may miss some vulnerabilities
(false-negatives), it produces no false-positives since any re-
ported vulnerability could only have been reported because
that vulnerability was exploited.

Another problem that has attracted attention from the se-
curity community is the existence of insecure cross-domain
Flash policies. The Flash plugin is able to conduct Cross-
Domain requests in a way that violates the Same-Origin
policy that exists in JavaScript. In order to overcome this
problem, any website that wants to be contacted through
Flash, must opt-in by placing a cross-domain policy file in
its root directory that specifies which domains can be ac-
cessed and in what ways. Three recent independent studies
[25, 20, 26] all discovered that a great number of websites
deploy insecure cross-domain policies in a way that allows
their users to fall victims to impersonation attacks, simply
by browsing to a malicious website.

An interesting observation is that over the last few years,
many researchers have shifted their focus and have designed
and implemented a number of blackbox and whitebox sys-
tems that, like FlashOver, attempt to automatically detect
vulnerabilities in Web applications. These systems are usu-
ally less precise than human analysts but can process data
much faster and can track dependencies among hundreds of
files. Balduzzi et al. [7] presented a system that automati-
cally discovers clickjacking attacks through an instrumented
Firefox browser and a series of plugins that detect the over-
lay of many objects at specifics coordinates within a Web
page. NoTamper, by Bisht et al. [9], detects vulnerabili-
ties that would allow a user to successfully perform HTTP
parameter-tampering. Ford et al. [14] propose OdoSwiff, a
system to detect deliberately malicious Flash ads through a
combination of static and dynamic analysis.

Jovanovic et al. [22], Xie et al. [42] and Wassermann et
al. [41] use static analysis on a Web page’s source code in an
effort to identify potential flaws that could lead to XSS, SQL
injections and command injection attacks. Sun et al. [38] use
static analysis to infer the intended access-control of Web
applications and use their models to detect access control
errors.

8. CONCLUSION
The constant innovation in the World Wide Web has al-

lowed developers to use more and more the browser as the
platform of choice for delivering content-rich applications to
users. In this picture, the Flash platform by Adobe plays a
very important role and is widely used in modern websites.
However, since Adobe is a Web technology, it is also part
of the modern attack surface where the targets are now the
users and their browsers. In this paper, we analyzed the
implications of making the wrong assumptions in the Flash
platform and we presented FlashOver, the first fully auto-

mated discovery system for XSS attacks, specific to Flash.
FlashOver uses a combination of static and dynamic anal-
ysis to identify vulnerabilities in real-life Flash objects and
using our system, we discovered that a significant number
of high-valued websites host Flash applications that are vul-
nerable to Cross-Site Scripting. These results attest towards
the importance of this attack vector and we hope that our
work will help raise awareness of insecure coding practices
in the community of Rich Internet Application developers.

Acknowledgments: We would like to thank our shep-
herd, Dieter Gollmann, and the anonymous reviewers for
their insightful comments that helped to greatly improve
the presentation of this paper. This research is partially
funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, the IBBT, the Re-
search Fund K.U.Leuven, the B-CCENTRE and the EU-
funded FP7 projects NESSoS and WebSand.

9. REFERENCES
[1] Adobe. About naming variables.

http://help.adobe.com/en_US/AS2LCR/Flash_10.0/

help.html?content=00000047.html.

[2] Adobe. ActionScript 3.0 - Controlling access to scripts
in a host web page.
http://livedocs.adobe.com/flex/3/html/help.

html?content=05B_Security_14.html.

[3] Adobe. Creating more secure SWF web applications.
https://www.adobe.com/devnet/flashplayer/

articles/secure_swf_apps.html.

[4] Flash Player | Adobe Flash Player 11 | Overview.
http://www.adobe.com/products/flashplayer.html.

[5] Alexa - Top Internet Sites.
http://www.alexa.com/topsites.

[6] M. Bailey. Neat, new, and ridiculous flash hacks. In
BlackHat DC, 2010.

[7] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and
C. Kruegel. A solution for the automated detection of
clickjacking attacks. In Proceedings of the 5th ACM
Symposium on Information, Computer and
Communications Security, ASIACCS ’10, pages
135–144, 2010.

[8] A. Barth. Chromium Blog: Security in Depth: New
Security Features.
http://blog.chromium.org/2010/01/

security-in-depth-new-security-features.html.

[9] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and
V. N. Venkatakrishnan. Notamper: automatic
blackbox detection of parameter tampering
opportunities in web applications. In Proceedings of
the 17th ACM conference on Computer and
communications security, CCS ’10, pages 607–618,
New York, NY, USA, 2010. ACM.

[10] D. Blazakis. Interpreter exploitation. In Proceedings of
the 4th Usenix Workshop on Offensive Technologies
(WOOT), 2010.

[11] W. A. S. Consortium. Web Hacking Incident
Database. http://projects.webappsec.org/
Web-Hacking-Incident-Database.

[12] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda.
Defending browsers against drive-by downloads:

Mitigating heap-spraying code injection attacks. In
Proceedings of the 6th International Conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’09, pages 88–106,
Berlin, Heidelberg, 2009. Springer-Verlag.

[13] Pc penetration | statistics | adobe flash platform
runtimes. http://www.adobe.com/products/
flashplatformruntimes/statistics.html.

[14] S. Ford, M. Cova, C. Kruegel, and G. Vigna.
Analyzing and detecting malicious flash
advertisements. In Proceedings of the 2009 Annual
Computer Security Applications Conference, ACSAC
’09, pages 363–372, Washington, DC, USA, 2009.
IEEE Computer Society.

[15] Hewlett-Packard Development Company. SWFScan.
http://h30499.www3.hp.com/t5/

Following-the-White-Rabbit/

SWFScan-FREE-Flash-decompiler/bc-p/5442703?

jumpid=reg_r1002_usen.

[16] HTML5.
http://dev.w3.org/html5/spec/Overview.html.

[17] P. Jagdale. Blinded by flash: Widespread security risks

flash developers donâĂŹt see. In BlackHat DC, 2009.

[18] M. Jakobsson, P. Finn, and N. Johnson. Why and
How to Perform Fraud Experiments. Security &
Privacy, IEEE, 6(2):66–68, March-April 2008.

[19] M. Jakobsson and J. Ratkiewicz. Designing ethical
phishing experiments: a study of (ROT13) rOnl query
features. In 15th International Conference on World
Wide Web (WWW), 2006.

[20] D. Jang, A. Venkataraman, G. M. Swaka, and
H. Shacham. Analyzing the Cross-domain Policies of
Flash Applications. In Proceedings of the 5th
Workshop on Web 2.0 Security and Privacy (W2SP),
2011.

[21] JoMo-kun. m0j0.j0j0 Guide to IIS Hacking.
http://www.foofus.net/~jmk/iis.html.

[22] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A
static analysis tool for detecting web application
vulnerabilities (short paper). In Proceedings of the
IEEE Symposium on Security and Privacy, pages
258–263, 2006.

[23] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A Client-Side Solution for Mitigating Cross
Site Scripting Attacks. In Security Track of the 21st
ACM Symposium on Applied Computing (SAC 2006),
April 2006.

[24] I. Kogan. no|wrap.be - flare.
http://www.nowrap.de/flare.html.

[25] G. Kontaxis, D. Antoniades, I. Polakis, and E. P.
Markatos. An empirical study on the security of
cross-domain policies in rich internet applications. In
Proceedings of the 4th European Workshop on Systems
Security (EUROSEC), 2011.

[26] S. Lekies, M. Johns, and W. Tighzert. The state of the
cross-domain nation. In Proceedings of the 5th
Workshop on Web 2.0 Security and Privacy (W2SP),
2011.

[27] Microsoft Silverlight.
http://www.microsoft.com/silverlight/.

[28] Microsoft. Security in Silverlight.

http://msdn.microsoft.com/en-us/library/

cc972657(v=vs.95).aspx.

[29] N. Nikiforakis, M. Balduzzi, S. Van Acker, W. Joosen,
and D. Balzarotti. Exposing the lack of privacy in file
hosting services. In Proceedings of the 4th USENIX
conference on Large-scale exploits and emergent
threats, LEET’11, Berkeley, CA, USA, 2011. USENIX
Association.

[30] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and
W. Joosen. SessionShield: Lightweight Protection
against Session Hijacking. In Proceedings of the 3rd
International Symposium on Engineering Secure
Software and Systems (ESSoS), 2011.

[31] OWASP Top 10 Web Application Security Risks.
http://www.owasp.org/index.php/Category:

OWASP_Top_Ten_Project.

[32] Rich internet application (ria) market share.
http://www.statowl.com/custom_ria_market_

penetration.php.

[33] D. Ross. Ie8 security part iv: The xss filter.
http://blogs.msdn.com/b/ie/archive/2008/07/02/

ie8-security-part-iv-the-xss-filter.aspx.

[34] C. Shiflett. Cross-Site Request Forgeries.
http://shiflett.org/articles/

cross-site-request-forgeries.

[35] Sothink swf decompiler. http:
//www.sothink.com/product/flashdecompiler/.

[36] Stefano Di Paola. SWFIntruder.
http://code.google.com/p/swfintruder/.

[37] C. Stoll. The internet? bah!
http://www.thedailybeast.com/newsweek/1995/02/

26/the-internet-bah.html, 1995.

[38] F. Sun, L. Xu, , and Z. Su. Static detection of access
control vulnerabilities in web applications. In
Proceedings of the 20th Usenix Security Symposium,
2011.

[39] M. Van Gundy and H. Chen. Noncespaces: Using
Randomization to Enforce Information Flow Tracking
and Thwart Cross-Site Scripting Attacks. In
Proceedings of the 16th Network and Distributed
System Security Symposium (NDSS). The Internet
Society, Feb. 2009.

[40] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel,
E. Kirda, and G. Vigna. Cross Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis. In Proceedings of the 14th Annual Network
and Distributed System Security Symposium (NDSS
’07), 2007.

[41] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
PLDI ’07, pages 32–41, New York, NY, USA, 2007.
ACM.

[42] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In Proceedings of
the 15th conference on USENIX Security Symposium -
Volume 15, Berkeley, CA, USA, 2006. USENIX
Association.

[43] The Cross-site Scripting FAQ.
http://www.cgisecurity.com/xss-faq.html.

